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Abstract Earthquake early warning (EEW) systems’ performance is driven by the trade-off between the
need for a rapid alert and the accuracy of each solution. A challenge for many EEW systems has been the
magnitude saturation for large events (MW > 7) and the resulting underestimation of seismic moment
magnitude. In this study, we test the performance of high-rate (1 Hz) GPS, based on seven seismic events, to
evaluate whether long-period ground motions can be measured well enough to infer reliably earthquake
predominant periods. We show that high-rate GPS data allow the computation of a GPS-based predominant
period (τg) to estimate lower bounds for the magnitude of earthquakes and distinguish between large
(MW > 7) and great (MW > 8) events and thus extend the capability of EEW systems for larger events. It has
also identified the impact of the different values of the smoothing factor α on the τg results and how the
sampling rate and the computation process differentiate τg from the commonly used τp.

1. Introduction

Seismic earthquake early warning (EEW) systems contribute toward protecting population and critical infra-
structures by issuing warnings up to tens of seconds before strong shaking arrives. Real-time EEW systems
have been implemented and demonstrated to have good performance for events of magnitude MW < 7.0
(Allen, 2013; Allen & Kanamori, 2003; Böse et al., 2012; Espinosa-Aranda et al., 2011; Zollo et al., 2013). In order
to estimate the final magnitudes of events, various strategies were based on characterizing the maximum
predominant period (i.e., τp; Nakamura, 1988) and the dominant period (τc; Kanamori, 2005), or the displace-
ment amplitude (i.e., Pd; Crowell et al., 2013; Hoshiba & Iwakiri, 2011; Rydelek & Horiuchi, 2006; Wu & Zhao,
2006). However, for large events (MW > 7.0), underestimation of magnitudes has been observed, likely due
to the saturation of the τp, as the smoothing factor α (i.e., α = 0.99) masks the low-frequency contribution
(Hoshiba et al., 2011; Hoshiba & Iwakiri, 2011). The most prominent example of such discrepancy has been
observed during the development of the 2011MW9+ Tohoku-oki event for which the seismic warning system
initially estimated themagnitude to beMW ~ 7.2 and the final estimation not exceedingMW8.1 (Hoshiba et al.,
2011; Hoshiba & Iwakiri, 2011; Wright et al., 2012).

We focus here on the predominant period methodology and identify three reasons for the limited perfor-
mance of EEW during large earthquakes. First is the overlap of the predominant period with microseismicity.
Distant earthquakes and oceanic seismic waves (Rhie & Romanowicz, 2004, 2006; Webb, 2008) generate long-
period ground motions that are well detected by EEW systems. This noise, which may include additional site-
specific characteristics (McNamara & Buland, 2004), expresses the baseline noise (McNamara et al., 2009), and
contributes to limitations of EEW systems in terms of both response time andmagnitude determination accu-
racy. To overcome this issue, τp can be also combined with Pd for the magnitude estimation (e.g., ShakeAlert;
Böse et al., 2012). Second, processing steps, such as de-trending and high-pass filtering, may remove long-
period signals that are necessary to capture the size of large events (Crowell et al., 2013; Melgar et al.,
2013, 2015). Third, potentially remaining errors in the acceleration record (i.e., due to microseismicity) will
affect the recursive procedure of the τp computation (Stiros, 2008). Finally, the use of narrow-width windows,
within which τp is computed, makes τp nonsensitive to long-period signals and therefore may be inappropri-
ate to capture the seismic source spectrum of events of MW > 7.0 (half-durations dT50% > 10 s; Meier et al.,
2010; Noda et al., 2012), causing underestimation of event magnitude.
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In that context, GPS waveforms may be useful to EEW systems for at least two reasons: First, GPS time series,
due to their lower sensitivity (i.e., higher noise level) are able to detect only large events and therefore are not
able to render the level of microseismic activity (Michel et al., 2017). GPS-based EEW systems could thus be
operated continuously even before the detection of P wave. Second, GPS provides displacement time series;
therefore, only differentiation is required to access velocity and acceleration information, preserving the
long-period content of the waveforms processed. Weaknesses of GPS measurements, such as multipath
effects or cycle slips (Houlié, Dreger, & Kim, 2014), can be limited in applications of dynamic motions, as they
can be detected and removed reliably (e.g., cycle slip even in real-time applications; Banville & Langley, 2010;
Momoh & Ziebart, 2012; Zhao et al., 2015) or because they have different frequency content than the seismic
signal (e.g., multipath; Geng & Bock, 2013; Moore et al., 2014).

Using GPS data recorded during main shocks of magnitudes ranging between MW6 and MW9+, we demon-
strate that it is possible to distinguish between large (MW6–7) and great (MW8+) events using a GPS-based
predominant period (τg), and to provide accurate lower bounds on the seismic moment magnitude of large
events (i.e., MW > 8).

2. Materials and Methods
2.1. Geodetic Data

We use GPS (1 Hz) and strong-motion (100 Hz) records of seven different earthquakes that occurred in Japan,
Nepal, and the United States (Figure 1; Table S1 in the supporting information). For the two events of Tohoku-
oki (MW9+ and MW7.9 aftershock), two sets of GPS time series are available:

1. Post-processed Precise Point Positioning (PPP, Ge et al., 2008; Psimoulis et al., 2014, 2015) records com-
puted using the Bernese GPS Software 5.2 (Dach et al., 2015) and a priori information (clocks, orbit, etc.)
from the Centre for Orbit Determination in Europe (Dach et al., 2009).

2. Real-time RTK mode time series computed using the Real-Time software (RTNet) and clock and orbit
corrections from the VERIPOS (Rocken et al., 2011). These data were already used by Wright et al. (2012)
to constrain the rupture process.

For the remaining events; MW6.0 2004 Parkfield (Houlié et al., 2014), MW6.0 2014 Napa; MW6.9 2008 Iwate,
MW7.8 2015 Nepal, andMW8.3 2003 Tokachi-Oki (Houlié et al., 2011; Kelevitz et al., 2017); we used time series
post-processed using the GAMIT 10.4 software (Herring et al., 2015). The processing methodology adopted
focuses on modeling the phase residual after estimation of long-term ground motion parameters (Houlié
et al., 2011). Such an approach has been proven to be reliable enough to successfully compare GPS time ser-
ies with both seismograms and synthetic waveforms for periods ranging from 3 to 160 s (Houlié et al., 2011,
2014). Both GPS processing packages (i.e., Bernese and GAMIT) resulted in GPS time series of similar accuracy,
without any impact on the τg estimates. However, the Bernese package was used to produce a simulated PPP
real-time solution, which could be compared against the RTNet solution.

2.2. Seismic Data

For the Tohoku-oki events, τp was computed using KiK-net (surface sensor) and K-NET acceleration records
(Aoi et al., 2011) to compare themwith τg. We determined the Pwave arrival times either by manually picking
when P arrival was visible or by computing theoretical travel times using the velocity model PREM
(Dziewonski & Anderson, 1981) with the TauP algorithm (http://www.seis.sc.edu/taup).

2.3. Predominant Period Computation

To compute the predominant period (τp) of a seismic signal, the accelerograms are integrated once and high-
pass filtered (Butterworth filter with a cutoff frequency of 7.5 mHz) in order to minimize linear drifts of the
velocity time series. At each time step i, the predominant period τp, (Allen & Kanamori, 2003), is computed
by the recursive relation:

τp ið Þ ¼ 2π

ffiffiffiffiffiffi
Xi

Di

r
(1)

where Xi and Di are the smoothed squared ground velocity and acceleration, respectively, at time i, given by
the relationships Xi ¼ αXi�1 þ x2i and Di ¼ αDi�1 þ dx

dt

� �2
i , with α being a smoothing constant, (Olson & Allen,
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2005) taken as α = 0.99 for 100 Hz sampling rate. The smoothing corresponds to a low-pass filter with a very
gentle roll-off and an impulse response of around 10 s. The velocity time series xi was used after passing
through a 3 Hz second- order one-way low-pass Butterworth filter, a commonly followed approach to
reduce the high-frequency content (Allen & Kanamori, 2003; Hoshiba et al., 2011). The τmax

p corresponds to
the maximum value of τp for the first 1 to 5 s (Olson & Allen, 2005) following the arrival of the P waves at
the site (Allen & Kanamori, 2003).

3. Results
3.1. τg: Computation and Comparison to τp

For the computation of τg, we followed the same recursive relation of τp, with the GPS displacement time
series being differentiated once and twice to velocity and acceleration, respectively. Using 1 Hz GPS time
series and a smoothing factor α set to 0.99, results in a much longer impulse response and therefore a
frequency response that focuses on longer periods than for 100 Hz data. The parameter τg was computed
for the Up and 3-D GPS time series (Figure S1). We used the τg of the 3-D GPS time series as the τg of the
Up component was more noisy, due to the higher noise level of the Up component relative to the horizontal
component. In Figure 2 we present the computed τp of MYG011 strong-motion records and the τg of the GPS
0550 records, which are very closely-spaced (<100 m), for the Tohoku-Oki MW9+ earthquake. Prior to the P
wave arrival, τp shows high values (e.g., Hoshiba et al., 2011), possibly due to the dominance of microseisms
in the signal and the accumulation of errors due to the integration (Stiros, 2008). The parameter τg, in con-
trast, fluctuates around a constant noise level (Figure S1), as GPS is not sensitive enough to record microse-
isms and because there is no noise amplification with the differentiation procedure. After the P wave arrival,
the impact of the microseisms decays, resulting in low values of τp (i.e., <1 s), while τg increases gradually,
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Figure 1. The GPS (circles), KiK-net (triangles) and K-NET (squares) sites selected for the estimation of τg value for the
earthquakes of Japan, Nepal, and California. The stars indicate the epicenter of the corresponding earthquakes. The
rupture of Tohoku-oki MW9+ (rupture area; Ozawa et al., 2011), Tokachi-Oki MW8.3 (rupture area; Miyazaki et al., 2004),
and Nepal MW7.8 (colored scaled slip model ranging between 0 and 5 m; United States Geological Survey, 2015) are
represented.
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with the maximum value of the 4 s window after the Pwave τmax
g , reach-

ing 3.84 s. However, it should be stated that the 1 Hz GPS data are
limited to detect predominant period larger than 2 s due to Nyquist
frequency limitation.

To further investigate the difference between τg and τp, we down-
sampled the seismic data to 1 Hz and calculated τp by following the
same procedure (i.e., α = 0.99). It is evident that τp still shows larger
variations prior to the P wave arrival; however, the values show lower
variation than those for τp of 100 Hz, due to the reduced influence of
microseisms by using lower sampling rate. With the arrival of the
P wave, and after the elimination of computation impact (i.e., t > 30 s),
it shows a similar pattern as the corresponding τg time series with a
relative offset. The latter was also confirmed through cross-correlation
analysis (Figure S2). Thus, it appears that the main difference of the
performance between τg and τp are the length of the impulse response
function and the sensitivity to microseisms combined with the amplifi-
cation of noise due to integration. For EEW based on seismic instru-
ments, the system is required to wait for the arrival of the P wave to
start computing a reliable τp time series. Otherwise, the pre-event
(i.e., seismic) noise will contaminate the early part of τp due to the
length of the impulse response. With GPS data we are able to compute
predominant periods τmax

g , as the maximum value of τg for a time

window, continuously, as the procedure of differentiation does not
lead to accumulation of error and also GPS is not sensitive to seismic
background noise. This removes the dependency on an accurate
P wave detection and results overall in a much simpler procedure.

Furthermore, the τg time series seems to be related with the seismic
motion for large earthquakes (Figure S3), reflecting the main wave-
form of the seismic motion, while the maximum τg value seems to
be related with the maximum peak displacement. However, further
investigation, using larger sample of seismic events and GPS sites, is

needed to analyze this correlation further as the seismic displacement is also susceptible to local site effects
(landslide, etc.).

The τg for the Up component of GPS time series follows the same pattern as the 3-D time series; however, the
noise level of τg for the Up component is higher than the 3-D component, making τg less effective (Figures S1
and S4 in the supporting information).

3.2. Smoothing Factor α

To further investigate the influence of the smoothing factor, we also used a smoothing factor of α2 = 0.36 in
addition to the previously shown α1 = 0.99. The α2 applied to 1 Hz data has the same impulse response as the
α1 applied to 100 Hz data, thus including more high-frequency signal relatively to that of α1 for 1 Hz data.

Figure 3 shows the τmax
g time series, where each epoch i is the maximum τg value for the 100 s (i� 99 to i) and

4 s (i � 3 to i) window for the two smoothing factors (α1 = 0.99 and α2 = 0.36, respectively) for the six closest
GPS sites of the two Tohoku-oki events (MW9+ andMW7.9 aftershock). The τmax

g time series are used to reveal

the impact of the smoothing factor on the stability and the sensitivity of the τg computation. Results shown in
Figure 3 indicate that before the Pwave arrival, the τmax

g time series for α2 are more scattered, defining higher

noise level than the τmax
g time series for α1, due to the higher-frequency content. For instance, for GPS 0550,

the closest GPS site for the Tohoku-okiM9+ earthquake, the standard deviation of the τmax
g time series are 0.03

and 0.95 for α1 and α2, respectively, while the corresponding mean noise levels of τmax
g are 3.23 and 4.14,

respectively. Post P wave arrival, τg also shows much less variation for α1 than for α2 with a clear separation
between the Mw9+ and Mw7.9 time series.
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Figure 2. Time series plots of the (a) Up and 3-D velocity using the GPS site 0550
and the Up component of the velocity for the strong-motion K-NET MYG011
site, with the dotted line indicating the P wave arrival and (b) the τg value, using
the 3-D time series of the GPS site, and τp value using the strong-motion site
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sponding to the value for t = 4 s (α equal to 0.99).
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Such separation is less visible for α2, as it is more sensitive to high-frequency signal and susceptible to high-
frequency measurement noise. However, for both smoothing factors the τg seems to differentiate roughly
with the earthquake magnitude.

3.3. Statistical Significance

To test which questions could be answered in real time using τmax
g time series, we performed a series of

Kolmogorov-Smirnov (KS) tests (Dimer de Oliveira, 2012; Smirnov, 1948). The two-sample KS test evaluates
the hypothesis of two samples being generated from the same distribution, by returning the test result H
[0,1], revealing the truth of the hypothesis and the p value [0,1], as the probability expressing the significance
level of the test result on the hypothesis (Marsaglia et al., 2003). By applying the two-sample KS tests in two
samples of τmax

g values, which may correspond to two different seismic events or noise, it can be assessed

whether τmax
g can be used to distinguish the two events or each of them from the noise and relate them to

MW. Thus, the aim of the KS tests is to show whether τmax
g time series can be implemented and track in

real-time continuous monitoring system, knowing the noise characteristic of each input time series.
3.3.1. Kolmogorov-Smirnov (KS) Test of Data Versus Noise
We first performed KS tests to check whether distributions of the noise and the data were statistically differ-
ent (Tables S2 and S3) for both data windows, using the function KS test of R (Marsaglia et al., 2003). For
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α = 0.36, it is not possible to differentiate data from noise for MW < 7.0, while for α = 0.99, discrimination
between data estimates and background noise can be done until MW ~ 6.5.
3.3.2. KS Test for Pairs of Events
We then tested the τg distribution for each pair of events by assessing whether these pairs are of the same
distribution (Tables S4 and S5) and which set of data belong to larger earthquake (MW of A < MW of B;
Tables S6 and S7). The success is very diverse of various events (Tables S4 and S5). The Tohoku MW9+ can
be distinguished as the largest of all the events (<10% error). However, Tohoku-oki MW7.9 aftershock and
Tokachi-Oki MW8.3 could not be distinguished (Tables S6 and S7). Nepal MW7.8 can be distinguished from
all the events of MW > 7.8 (Tables S6 and S7).
3.3.3. KS Test for Groups of Events
Statistical analysis of τg estimations shows that for earthquakes ofMW < 7.0, τg is very close to the noise level
(Figures S5 and S6), mainly for α = 0.36, making the estimation of earthquake magnitude less reliable.

Thus, we make three groups of events based on magnitudes: (i)MW < 7.0, (ii) MW ≥ 7.9, and (iii) MW > 8.5. To
verify this hypothesis, we run a two-sample KS test for which it is possible to determine whether the distribu-
tions of τg values for two different groups of earthquakes are significantly different. Presented in Table S8 are
the results for the comparison between groups of earthquakes of different magnitude. From the hypothesis
analysis, it was verified that the Nepal earthquake MW7.8 can be distinguished from the earthquakes of
MW < 7 (i.e., Iwate, Parkfield, and Napa), while Tohoku-oki MW9+ can also be distinguished from the earth-
quakes of Tokachi-Oki MW8.3 and Tohoku-oki MW7.9 aftershock, if taken together. Finally, the Tohoku-oki
MW9+ and Tokachi-Oki MW8.3 can be distinguished from the earthquakes of magnitude MW < 8.0, even
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though Tokachi-Oki MW8.3 could not be distinguished by Tohoku-oki MW7.9 aftershock. This is due to the
distribution of Tohoku-oki MW 9+, which makes Tokachi-Oki MW 8.3 distinguishable from the
earthquakes MW < 8.0.

3.4. The τmax
g -MW Empirical Relationship

To evaluate the relationship between τg and MW, we computed τmax
g values for (i) noise (before the P wave

arrival) and (ii) a 4 s window after the Pwave arrival, from the six closest available GPS sites from the epicenter
of each seismic event. For both smoothing factors (i.e., α = 0.36 and α = 0.99), the mean trend of the τmax

g

increases with MW, while the noise level of τmax
g is rather stable, regardless of the earthquake magnitude

(Figures 4a and 4b). However, for α = 0.36, the scatter and the mean trend of τmax
g values increase more rapidly

with the earthquake magnitude, due to the limited impact of the smoothing on the τg computation
(Figure 4b). Furthermore, for α = 0.36, the τg values for earthquakes of MW6.0 are close to the noise level,
as it was also revealed from the KS test, indicating that they should be excluded from the τg-MW relation.
Thus, by applying linear regression, we obtain the following relationship for α = 0.99 (MW ≥ 6):

τg ¼ 0:176 MW þ 2:150 r2 ¼ 0:98; n ¼ 42 and p ¼ 1:84�10� 5ð Þ (2)

and for α = 0.36 (MW > 6.5):

τg ¼ 3:050 MW–16:812 r2 ¼ 0:98; n ¼ 30 and p ¼ 2:03�10� 3ð Þ (3)

where r, n, and p are the regression coefficient, the number of the data, and the p value of the regression ana-
lysis, respectively. Thus, based on the τg

max estimates and the evaluation of their distribution for the two
smoothing factors (Figures S5 and S6), we could recover the earthquake magnitudeMW. Based on the limited
number of examined seismic events, the uncertainty of each MW was computed by using the uncertainty of
each estimated τg and the law of error propagation, resulting that for α = 0.99 the uncertainty is ±0.4 while for
α = 0.36 reaches up to ±1. Further investigation by including more seismic events is expected to limit the
uncertainty of theMW-τg relationship. Also, it seems that increasing the number of GPS leads to a more robust
MW estimation (Figure S8). Finally, the analysis of the statistics (i.e., maximum and standard deviation) of the
τmax
g values for both smoothing factors revealed their relationship with the earthquake magnitude. The τg for
α = 0.99 seems to bemore robust and increasing slowly with themagnitude, while the τg for α = 0.36 seems to
be more scattered with the latter increasing with the magnitude. However, it would be ideal to correlate the
statistical characteristics of the τmax

g distribution for both smoothing factors with the earthquake magnitude,
to make the magnitude estimation more robust and reliable (Figure S9).

3.5. Real Time Versus Simulated Real Time

To investigate the performance of τg of real-time GPS time series, we compared the τg estimates of the simu-
lated real-time PPP solution against the real-time RTK solutions of the Tohoku-oki MW9+ earthquake. By ana-
lyzing the τg of the six GPS stations closest to the epicenter, we find that both sets of τg time series have
similar patterns and amplitudes (Figures S1 and S4), resulting in consistent estimates of τmax

g . The noise level

of the RTK τmax
g time series is insignificantly higher than the post-processed PPP solution (Figure S4), making

the RTK time series sufficient for the reliable estimation of τmax
g . Finally, errors in real-time data can be suffi-

ciently resolved, thanks to continuously developing methods (Momoh & Ziebart, 2012).

4. Conclusions and Discussion

We have shown that GPS can be used to constrain seismic moment MW of large earthquakes (MW > 7.0), by
computing the predominant seismic period from GPS data (τg). The capability of GPS in recovering the period
more accurately than the amplitude of the recorded motion (Häbelring et al., 2015; Moschas et al., 2014;
Psimoulis et al., 2008) and the limited required filtering during the processing of GPS data (i.e., only differen-
tiation) leads to robust and reliable estimation of τgwithout the problems of magnitude saturation due to the
processing procedure (i.e., integration) of the seismic data and their sensitivity to microseismicity. The GPS τg
estimation was computed by using two smoothing factors α (0.99 and 0.36), corresponding to low-pass filters
with long- and short-period impulse responses. Even though, the smoothing factor α = 0.99 proved to be
more robust for the computation of τg, still the smoothing factor α = 0.36 might be useful as its scatter
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seems to depend on the earthquake magnitude. Based on that, we further established τg-MW laws, which can
be used to complement τp-MW relationships from seismic data to reliably constrain magnitude of earth-
quakes > MW 7.0.

Based on our data a distinction of three groups with earthquakemagnitude (i)Mw> 7.0, (ii)MW> 8.0, and (iii)
MW> 8.5, seems to be possible within the first 4 s of Pwave arrivals. To account for rupture complexities, and
the associated inability to predict the final magnitude before the end of the rupture, one could also compute
a set of evolving empirical relationships based on the amount of available P wave recording (Carranza et al.,
2013; Colombelli et al., 2015). The reduced noise and the potential correlation with displacement waveform,
etc., make τg from GPS a valuable parameter in estimating the magnitude of an earthquake during or right
after the rupture. However, this is only a first attempt to evaluate whether GPS records can be used for the
computation of the predominant period τg and it is necessary to shed further light on the robustness of this
method and the potential correlation of displacement waveform with τg, by using more GPS recordings from
large earthquakes.

In conclusion, GPS-based EEW systems could be implemented and support existing seismic data-based EEW
systems. The τg time series analyses would be routinely conducted estimating the τmax

g values for the short-

and long-period smoothing factors and by calculating the corresponding statistical characteristics (e.g., mean
and spread) that could provide the existing seismic warning systems with additional information to constrain
the size of an earthquake of magnitudeMW > 7. The potential collocation of GPS and strong-motion sensors
would lead potentially to even more accurate computation of the velocity through Kalman filtering (Bock
et al., 2011) or other existing EEW algorithms (Benedetti et al., 2014) and enhance the performance of τg.
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