11 research outputs found

    Adaptations respiratoires et locomotrices des sujets obèses lors du test de marche de six minutes

    Get PDF
    The reference method for assessment of exercise capacity is the cardio-pulmonary exercise testing (CPET). Nevertheless, CPET is expensive, time consuming, requires specifics skills and is not used for all subjects needing exercise capacity assessment. The 6 minute walk test (6MWT) is free of these disadvantages but does not give basic information about physiological adaptation induced by walking. The aim of this study was to design a non-invasive method for ventilatory and locomotor monitoring. Respect of the spontaneous aspects of these adaptations was considered. Respiratory inductive plethysmography (RIP) was considered for ventilatory evaluation whereas locomotor adaptation was assessed with a tri-axial accelerometer. These new methods provided acceptable results for ventilatory and locomotor dimensions. Confronting our new RIP method with a pneumotachograph as a reference device, we found correlation coefficients from. 0.81 to 0.96 for determination of tidal volume (Vt), inspiratory (Ti) and expiratory time (Te). Confronting our accelerometric method with video recordings as control, we found significant correlation coefficients (r=0.99 and p< 0.001) for determination of cadence, mean step length and automatic distance covered (6MWD) during the 6MWT. Comparisons of ventilatory and locomotor pattern of control and obese without comorbidities showed that discriminating their pattern was possible (p<0.01 for Vt, Ti, Te and p<0.001 for cadence, mean step length and 6MWD). These results imply that even a population without respiratory disorders as the obese population considered in this study, can be discriminated with our monitoring method. It can be concluded that this method is promising for improvement of care to obese subjects and raises technological and clinical perspectives for subjects with respiratory disordersLa méthode de référence pour l’évaluation de la capacité d’exercice est l’Exploration Fonctionnelle d’eXercice (EFX). En pratique, pour des problèmes de coût, de matériel et d’expertise médicale, l’EFX n’est pas réalisée chez tous les sujets dont la capacité d’exercice mérite d’être explorée. Le test de marche de 6 minutes (6MWT) ne présente pas ces inconvénients mais ne donne pas d’informations sur les adaptations physiologiques au cours de cet exercice. L’objectif de ce travail de thèse était de concevoir une méthode non invasive de monitorage des adaptations ventilatoires et locomotrices. L’accent a été porté sur le respect du caractère spontané de ces adaptations. La pléthysmographie respiratoire d’inductance (RIP) et l’accélérométrie ont été choisies pour l’évaluation de ces adaptations. Les performances de ces nouvelles méthodes de monitorage sont acceptables pour ces deux dimensions. La confrontation de notre méthode RIP au pneumotachographe, outil de référence, objective des coefficients de corrélations compris entre 0,81 et 0,96 pour le volume courant(Vt), les temps inspiratoires (Ti) et expiratoires (Te). De même, la confrontation de notre méthode accélérométrique avec le contrôle vidéographique montre des coefficients de corrélations de 0,99 pour les paramètres locomoteurs : cadence, longueur moyenne du pas et détermination automatique des distances parcourues (6MWD). La comparaison des profils ventilatoires et locomoteurs entre contrôles et sujets obèses révèle qu’une discrimination est possible (p<0,01 pour Vt, Ti, Te et p<0 ,001 pour cadence, longueur moyenne de pas et 6MWD). Ainsi, même une population sans pathologie respiratoire comme la population obèse sans comorbidités, choisie comme modèle d’étude dans ce travail, peut être discriminée par notre méthode de monitorage. Ces résultats sont encourageants au regard de l’amélioration de la prise en charge des sujets obèses et laissent entrevoir des perspectives tant au niveau technologique qu’à un niveau clinique plus large pour, par exemple, les sujets atteints de pathologies respiratoires susceptibles de limiter leur capacité d’effort

    Respiratory and locomotor adaptations of obese subjects during 6 minute walk test

    No full text
    La méthode de référence pour l’évaluation de la capacité d’exercice est l’Exploration Fonctionnelle d’eXercice (EFX). En pratique, pour des problèmes de coût, de matériel et d’expertise médicale, l’EFX n’est pas réalisée chez tous les sujets dont la capacité d’exercice mérite d’être explorée. Le test de marche de 6 minutes (6MWT) ne présente pas ces inconvénients mais ne donne pas d’informations sur les adaptations physiologiques au cours de cet exercice. L’objectif de ce travail de thèse était de concevoir une méthode non invasive de monitorage des adaptations ventilatoires et locomotrices. L’accent a été porté sur le respect du caractère spontané de ces adaptations. La pléthysmographie respiratoire d’inductance (RIP) et l’accélérométrie ont été choisies pour l’évaluation de ces adaptations. Les performances de ces nouvelles méthodes de monitorage sont acceptables pour ces deux dimensions. La confrontation de notre méthode RIP au pneumotachographe, outil de référence, objective des coefficients de corrélations compris entre 0,81 et 0,96 pour le volume courant(Vt), les temps inspiratoires (Ti) et expiratoires (Te). De même, la confrontation de notre méthode accélérométrique avec le contrôle vidéographique montre des coefficients de corrélations de 0,99 pour les paramètres locomoteurs : cadence, longueur moyenne du pas et détermination automatique des distances parcourues (6MWD). La comparaison des profils ventilatoires et locomoteurs entre contrôles et sujets obèses révèle qu’une discrimination est possible (p<0,01 pour Vt, Ti, Te et p<0 ,001 pour cadence, longueur moyenne de pas et 6MWD). Ainsi, même une population sans pathologie respiratoire comme la population obèse sans comorbidités, choisie comme modèle d’étude dans ce travail, peut être discriminée par notre méthode de monitorage. Ces résultats sont encourageants au regard de l’amélioration de la prise en charge des sujets obèses et laissent entrevoir des perspectives tant au niveau technologique qu’à un niveau clinique plus large pour, par exemple, les sujets atteints de pathologies respiratoires susceptibles de limiter leur capacité d’effort.The reference method for assessment of exercise capacity is the cardio-pulmonary exercise testing (CPET). Nevertheless, CPET is expensive, time consuming, requires specifics skills and is not used for all subjects needing exercise capacity assessment. The 6 minute walk test (6MWT) is free of these disadvantages but does not give basic information about physiological adaptation induced by walking. The aim of this study was to design a non-invasive method for ventilatory and locomotor monitoring. Respect of the spontaneous aspects of these adaptations was considered. Respiratory inductive plethysmography (RIP) was considered for ventilatory evaluation whereas locomotor adaptation was assessed with a tri-axial accelerometer. These new methods provided acceptable results for ventilatory and locomotor dimensions. Confronting our new RIP method with a pneumotachograph as a reference device, we found correlation coefficients from. 0.81 to 0.96 for determination of tidal volume (Vt), inspiratory (Ti) and expiratory time (Te). Confronting our accelerometric method with video recordings as control, we found significant correlation coefficients (r=0.99 and p< 0.001) for determination of cadence, mean step length and automatic distance covered (6MWD) during the 6MWT. Comparisons of ventilatory and locomotor pattern of control and obese without comorbidities showed that discriminating their pattern was possible (p<0.01 for Vt, Ti, Te and p<0.001 for cadence, mean step length and 6MWD). These results imply that even a population without respiratory disorders as the obese population considered in this study, can be discriminated with our monitoring method. It can be concluded that this method is promising for improvement of care to obese subjects and raises technological and clinical perspectives for subjects with respiratory disorder

    New Respiratory Inductive Plethysmography (RIP) Method for Evaluating Ventilatory Adaptation during Mild Physical Activities.

    No full text
    The pneumotachometer is currently the most accepted device to measure tidal breathing, however, it requires the use of a mouthpiece and thus alteration of spontaneous ventilation is implied. Respiratory inductive plethysmography (RIP), which includes two belts, one thoracic and one abdominal, is able to determine spontaneous tidal breathing without the use of a facemask or mouthpiece, however, there are a number of as yet unresolved issues. In this study we aimed to describe and validate a new RIP method, relying on a combination of thoracic RIP and nasal pressure signals taking into account that exercise-induced body movements can easily contaminate RIP thoracic signals by generating tissue motion artifacts. A custom-made time domain algorithm that relies on the elimination of low amplitude artifacts was applied to the raw thoracic RIP signal. Determining this tidal ventilation allowed comparisons between the RIP signal and simultaneously-recorded airflow signals from a calibrated pneumotachometer (PT). We assessed 206 comparisons from 30 volunteers who were asked to breathe spontaneously at rest and during walking on the spot. Comparisons between RIP signals processed by our algorithm and PT showed highly significant correlations for tidal volume (Vt), inspiratory (Ti) and expiratory times (Te). Moreover, bias calculated using the Bland and Altman method were reasonably low for Vt and Ti (0.04 L and 0.02 s, respectively), and acceptable for Te (<0.1 s) and the intercept from regression relationships (0.01 L, 0.06 s, 0.17 s respectively). The Ti/Ttot and Vt/Ti ratios obtained with the two methods were also statistically correlated. We conclude that our methodology (filtering by our algorithm and calibrating with our calibration procedure) for thoracic RIP renders this technique sufficiently accurate to evaluate tidal ventilation variation at rest and during mild to moderate physical activity

    Evaluation of Vt, Ti and Te by RIP signals processed by the custom made algorithm.

    No full text
    <p>The linear relationship between Vt determined by PT, and Vt determined by RIP plus the algorithm is shown in the upper left panel. Bland and Altman’s analysis of Vt determined by PT, and Vt determined by RIP plus the algorithm is shown in the upper right panel with bias (long dotted line) and limit of agreements (short dotted line). The linear relationship between Ti determined by PT, and Ti determined by RIP plus the algorithm is shown in the middle left panel. Bland and Altman’s analysis of Ti by PT and by RIP plus the algorithm is shown in the middle right panel with bias (long dotted line) and limit of agreements (short dotted line). The linear relationship between Te determined by PT, and Te determined by RIP plus the algorithm (lower left panel). Bland and Altman’s analysis of Te by PT and Te by RIP signal plus the algorithm (lower right panel) with bias (long dotted line) and limit of agreements (short dotted line).</p

    Illustration of the experimental setup including RIP thoracic belt, nasal cannula and a polygraph for acquisition of data.

    No full text
    <p>Illustration of the experimental setup including RIP thoracic belt, nasal cannula and a polygraph for acquisition of data.</p

    Summary of statistical analysis comparing the RIP signal processed by the custom made algorithm with PT.

    No full text
    <p>r: Spearman coefficient of correlation, p: p-value from Spearman coefficient determination, CI: Confidence intervals, SD: Standard deviation.</p

    Evaluation of slopes from linear relationships between RIP and PT before and after activity.

    No full text
    <p>Variations in slopes (left panel) ns: not significant. Relationship between slopes before and after activity (right panel) r: Spearman correlation coefficient; p: p-value.</p

    Evaluation of Ti/Ttot and Vt/Ti ratios determined by RIP signals processed by the custom made algorithm.

    No full text
    <p>The linear relationship between Ti/Ttot ratio by PT and the Ti/Ttot ratio by RIP signal treated by the algorithm (upper left panel). Bland and Altman’s analysis of Ti/Ttot ratio determined by PT and Ti/Ttot ratio determined by RIP signal treated by the algorithm (upper right panel) with bias (long dotted line) and limit of agreements (short dotted line). Linear relationship between Vt/Ti ratio determined by PT and the Vt/Ti ratio determined by RIP signal treated by the algorithm (lower left panel). Bland and Altman’s analysis of Vt/Ti ratio determined by PT and Vt/Ti ratio determined by RIP signal treated by the algorithm (lower right panel) with bias (long dotted line) and limit of agreements (short dotted line).</p

    Description of the custom made algorithm in 3 steps.

    No full text
    <p>Step 1: recognition of the onset of the respiratory cycle by nasal signal (<b>vertical bars</b>). Step 2: searching for local RIP signal maximums (<b>dark squares</b>). Step 3: searching for local RIP signal minimums (<b>light squares</b>). Illustration of the results after treatment by the algorithm 1(<b>bottom panel</b>): treated signal (<b>dotted line</b>) superimposed on the raw signal (<b>continuous line</b>).</p
    corecore