120 research outputs found

    EEG source-space synchrostate transitions and Markov modeling in the math-gifted brain during a long-chain reasoning task

    Get PDF
    To reveal transition dynamics of global neuronal networks of math‐gifted adolescents in handling long‐chain reasoning, this study explores momentary phase‐synchronized patterns, that is, electroencephalogram (EEG) synchrostates, of intracerebral sources sustained in successive 50 ms time windows during a reasoning task and non‐task idle process. Through agglomerative hierarchical clustering for functional connectivity graphs and nested iterative cosine similarity tests, this study identifies seven general and one reasoning‐specific prototypical functional connectivity patterns from all synchrostates. Markov modeling is performed for the time‐sequential synchrostates of each trial to characterize the interstate transitions. The analysis reveals that default mode network, central executive network (CEN), dorsal attention network, cingulo‐opercular network, left/right ventral frontoparietal network, and ventral visual network aperiodically recur over non‐task or reasoning process, exhibiting high predictability in interactively reachable transitions. Compared to non‐gifted subjects, math‐gifted adolescents show higher fractional occupancy and mean duration in CEN and reasoning‐triggered transient right frontotemporal network (rFTN) in the time course of the reasoning process. Statistical modeling of Markov chains reveals that there are more self‐loops in CEN and rFTN of the math‐gifted brain, suggesting robust state durability in temporally maintaining the topological structures. Besides, math‐gifted subjects show higher probabilities in switching from the other types of synchrostates to CEN and rFTN, which represents more adaptive reconfiguration of connectivity pattern in the large‐scale cortical network for focused task‐related information processing, which underlies superior executive functions in controlling goal‐directed persistence and high predictability of implementing imagination and creative thinking during long‐chain reasoning

    A study of the HI gas fractions of galaxies at z ~ 1

    Full text link
    Due to the fact that HI mass measurements are not available for large galaxy samples at high redshifts, we apply a photometric estimator of the HI-to-stellar mass ratio (M_HI/M_*) calibrated using a local Universe sample of galaxies to a sample of galaxies at z ~ 1 in the DEEP2 survey. We use these HI mass estimates to calculate HI mass functions (HIMFs) and cosmic HI mass densities (Omega_HI), and to examine the correlation between star formation rate and HI gas content, for galaxies at z ~ 1. We have estimated HI gas masses for ~ 7,000 galaxies in the DEEP2 survey with redshifts in the range 0.75 < z < 1.4 and stellar masses M_* > 10^{10} M_solar, using a combination of the rest-frame ultraviolet-optical colour (NUV - r) and stellar mass density (mu_*) as a way to estimate M_HI/M_*. It is found that the high mass end of high-z HI mass function (HIMF) is quite similar to that of the local HIMF. The lower limit of Omega_HI,limit = 2.1 * 10^{-4} h_70^{-1}, obtained by directly integrating the HI mass of galaxies with M_* > 10^{10} M_solar, confirms that massive star-forming galaxies do not dominate the neutral gas at z ~ 1. We study the evolution of the HI mass to stellar mass ratio from z ~ 1 to today and find a steeper relation between HI gas mass fraction and stellar mass at higher redshifts. Specifically, galaxies with M_* = 10^{11} M_solar at z ~ 1 are found to have 3 - 4 times higher neutral gas fractions than local galaxies, while the increase is as high as 4 - 12 times at M_* = 10^{10} M_solar. The quantity M_HI/SFR exhibits very large scatter, and the scatter increases from a factor of 5 - 7 at z = 0 to factors close to a hundred at z = 1. This implies that there is no relation between HI gas and star formation in high redshift galaxies. The HI gas must be linked to cosmological gas accretion processes at high redshifts.Comment: 10 pages, 13 figures, A&A accepte

    Utilizing the nanosecond pulse technique to improve antigen intracellular delivery and presentation to treat tongue squamous cell carcinoma

    Get PDF
    Tongue squamous cell carcinoma is the most common squamous cell carcinoma of the head and neck. Immunotherapy has great potential in the treatment of tongue squamous cell carcinoma because of its unique advantages. However, the efficacy of immunotherapy is limited by the efficiency of antigen phagocytosis by immune cells. We extracted dendritic cells (DCs) from human peripheral blood. Utilizing a nanosecond pulsed electric field (nsPEF), we deliver the tumour lysate protein into DCs and then incubate the DCs with PBMCs to obtain specific T cells to kill tumour cells. The biosafety of nsPEF was evaluated by the ANNEXIN V-FITC/PI kit. The efficacy of lysate protein delivery was evaluated by flow cytometry. The antitumour efficacy was tested by CCK-8 assay. The nsPEF of the appropriate field strength can significantly improve the phagocytic ability of DCs to tumour lysing proteins and have good biosafety. The tumour cell killing rate of the nsPEF group was higher than the other group (p< 0.05). Utilizing nsPEF to improve the phagocytic and presenting ability of DCs could greatly activate the adaptive immune cells to enhance the immunotherapeutic effect on tongue squamous cell carcinoma

    The \u3ci\u3eAPOA5\u3c/i\u3e rs662799 polymorphism is associated with dyslipidemia and the severity of coronary heart disease in Chinese women

    Get PDF
    Background: The APOA5 rs662799 polymorphism has been widely reported regarding its associations with the plasma lipid levels and the occurrence of coronary heart disease (CHD), whereas its relationship with the severity of CHD has not yet been explored. Methods: Four hundred and seventy-eight angiografically defined subjects (325 CHD patients and 153 CHD-free controls) were enrolled in this study. The rs662799 polymorphism was genotyped, and the fasting lipid data were collected for all participants. The severity of CHD was evaluated for the CHD patients by using Gensini scores. Results: The variant C allele of the rs662799 polymorphism was associated with lower levels of HDL-C in CHD-free women, and higher levels of TG and TG/HDL-C in women with CHD (P \u3c 0.05 for all). The C allele was associated with higher prevalence of dyslipidemia and higher levels of Gensini scores only in women (P \u3c 0.05 for both), but not in men. Multivariate linear regression analysis showed that the rs662799 polymorphism was independently associated with the Gensini scores in women after adjustment for other potential CHD risk factors (Beta = 0.157, 95 % CI: 0.017–0.298, P = 0.028). Conclusion: Our data indicate that the rs662799 polymorphism is associated with dyslipidemia and the severity of CHD in Chinese women

    Twist1 enhances hypoxia induced radioresistance in cervical cancer cells by promoting nuclear EGFR localization

    No full text
    Twist1 is a crucial transcription factor that regulates epithelial mesenchymal transition and involves in metastasis. Recent evidence suggests that Twist1 plays important role in hypoxia-induced radioresistance, but the underlying mechanism remains elusive. Here we investigated the change of Twist1 expression in human cervical squamous cancer cell line SiHa after hypoxia treatment. We also explored the role of Twist1 in radioresistance by manipulating the expression level of Twist1.We observed that hypoxia treatment elevated the expression of Twist1 in SiHa cells. Knockdown of Twist1 with siRNA increased the radiosensitivity of SiHa cells under hypoxia condition, accompanied by reduced levels of nuclear Epidermal Growth Factor Receptor (EGFR) and DNA-dependent protein kinase (DNA-PK). Conversely, overexpression of Twist1 led to increased radioresistance of SiHa cells, which in turn increased nuclear EGFR localisation and expression levels of nuclear DNA-PK. Moreover, concomitant high expression of hypoxia-inducible factor-1? (HIF-1?) and Twist1 in primary tumors of cervical cancer patients correlated with the worse prognosis after irradiation treatment. Taken together, these data provide new insights into molecular mechanism underlying hypoxia-induced radio resistance in cervical cancer cells, and suggest that Twist1 is a promising molecular target to improve the efficacy of cancer radiotherapy

    Toxicity evaluation of processing Evodiae fructus based on intestinal microbiota

    Get PDF
    BackgroundWith the development of healthcare services, drug efficacy, and safety have become the focus of drug use, and processing alters drug toxicity and efficacy, exploring the effects of processing on Evodiae fructus (EF) can guide the clinical use of drugs.MethodsFifty male Kunming mice were randomly divided into the control group (CCN), raw small-flowered EF group (CRSEF), raw medium-flowered EF group (CRMEF), processing small-flowered EF group (CPSEF), and processing medium-flowered EF group (CPMEF). The CRSEF, CRMEF, CPSEF, and CPMEF groups were gavaged with aqueous extracts of raw small-flowered EF dry paste (RSEF), medium-flowered EF dry paste (RMEF), processing small-flowered EF dry paste (PSEF) and processing medium-flowered EF dry paste (PMEF), respectively, for 21 days at 5 times the pharmacopeial dosage. Upon concluding the experiment, histopathological sections of liver and kidney tissues were examined. Additionally, levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum creatinine (SCr), and blood urea nitrogen (BUN) were determined. DNA from the intestinal contents of the mice was extracted, and 16S rRNA full-length high-throughput sequencing was performed.ResultsAfter fed EF 21 days, mice exhibited a decreasing trend in body weight. Comparative analysis with the CCN group revealed an upward trend in SCr, BUN, AST, and ALT levels in both CRSEF and CRMEF groups. The CRMEF group displayed notably elevated BUN and AST levels, with an observed increasing trend in Scr and ALT. Kidney sections unveiled cellular edema and considerable inflammatory cell infiltrates, whereas significant liver damage was not evident. Compared with CRSEF, Bun levels were significantly lower while AST levels were significantly higher in the CPMEF group. Additionally, the intestinal microbiota diversity and the relative abundance of Psychrobacter decreased significantly, and the relative abundance of Staphylococcus, Jeotgalicoccus, and Salinicoccus increased significantly in the CPMEF group. AST, ALT, and SCr were positively correlated with Staphylococcus, Jeotgalicoccus, and Salinicoccus.ConclusionIn conclusion, PMEF significantly increased harmful bacteria (Staphylococcus, Jeotgalicoccus, and Salinicoccu) and decreased beneficial bacteria. SEF with 5 times the clinical dose showed nephrotoxicity and SEF nephrotoxicity decreased after processing, but EF hepatotoxicity was not significant, which may be due to insufficient dose concentration and time

    Current understanding of CTLA-4: from mechanism to autoimmune diseases

    Get PDF
    Autoimmune diseases (ADs) are characterized by the production of autoreactive lymphocytes, immune responses to self-antigens, and inflammation in related tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly expressed in activated T cells and works as a critical regulator in the inflammatory response. In this review, we first describe the structure, expression, and how the signaling pathways of CTLA-4 participate in reducing effector T-cell activity and enhancing the immunomodulatory ability of regulatory T (Treg) cells to reduce immune response, maintain immune homeostasis, and maintain autoimmune silence. We then focused on the correlation between CTLA-4 and different ADs and how this molecule regulates the immune activity of the diseases and inhibits the onset, progression, and pathology of various ADs. Finally, we summarized the current progress of CTLA-4 as a therapeutic target for various ADs

    Autocorrelations of stellar light and mass at z~0 and ~1: From SDSS to DEEP2

    Full text link
    We present measurements of projected autocorrelation functions w_p(r_p) for the stellar mass of galaxies and for their light in the U, B and V bands, using data from the third data release of the DEEP2 Galaxy Redshift Survey and the final data release of the Sloan Digital Sky Survey (SDSS). We investigate the clustering bias of stellar mass and light by comparing these to projected autocorrelations of dark matter estimated from the Millennium Simulations (MS) at z=1 and 0.07, the median redshifts of our galaxy samples. All of the autocorrelation and bias functions show systematic trends with spatial scale and waveband which are impressively similar at the two redshifts. This shows that the well-established environmental dependence of stellar populations in the local Universe is already in place at z=1. The recent MS-based galaxy formation simulation of Guo et al. (2011) reproduces the scale-dependent clustering of luminosity to an accuracy better than 30% in all bands and at both redshifts, but substantially overpredicts mass autocorrelations at separations below about 2 Mpc. Further comparison of the shapes of our stellar mass bias functions with those predicted by the model suggests that both the SDSS and DEEP2 data prefer a fluctuation amplitude of sigma_8 0.8 rather than the sigma_8=0.9 assumed by the MS.Comment: 10 pages, 4 figures, accepted for publication in Monthly Notices, minor revisions in tex
    • …
    corecore