909 research outputs found
Renormalization Effects in a Dilute Bose Gas
The low-density expansion for a homogeneous interacting Bose gas at zero
temperature can be formulated as an expansion in powers of ,
where is the number density and is the S-wave scattering length.
Logarithms of appear in the coefficients of the expansion. We show
that these logarithms are determined by the renormalization properties of the
effective field theory that describes the scattering of atoms at zero density.
The leading logarithm is determined by the renormalization of the pointlike scattering amplitude.Comment: 10 pages, 1 postscript figure, LaTe
Evaluation of protective effect of cyclodextrin glucanotransferase-treated Gastrodia elata Blume extract on ultraviolet B-induced premature skin aging
Purpose: To investigate the protective effect of Gastrodia elata Blume (G. elata, GE) and cyclodextrin glucanotransferase (CGTase) enzyme-treated G. elata extract (EGE) against premature skin aging using ultraviolet B (UVB)-exposed normal human dermal fibroblasts (NHDFs).Methods: The extract was characterized by liquid chromatography with tandem mass spectrometry (LC-MS/MS), ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC–QToF–MS) and nuclear magnetic resonance spectroscopy (NMR). The expression of matrix metalloproteinases (MMP-1,3), interleukin-6 (IL-6), transforming growth factor (TGF-β1) and procollagen type I was assayed using ELISA kits. Safety evaluation of EGE’s dietary administration and topical application was performed by in vivo acute oral toxicity and local lymph node tests.Results: Lower MMP-1 and IL-6 and higher procollagen type I and TGF-β1 levels were observed after treatment with EGE than with GE, indicating that EGE was more effective than GE in treating UVBinduced photoaging. With respect to phenolic composition, EGE had lower 4-hydroxybenzaldehyde (4- HBA) level and higher α-gastrodin level than GE. In UVB-irradiated NHDFs, α-gastrodin exhibited higher anti-aging activity than 4-HBA and β-gastrodin based on the expression of MMP-1, MMP-3, and procollagen type I. The in vivo data indicate that EGE was safe at concentrations of up to 2000 mg/kg for dietary administration and 0.1 % for topical application.Conclusion: EGE protects UVB-induced photoaged human skin better than GE owing to its higher α- gastrodin content. Thus, EGE may be potentially useful agent in anti-aging cosmetic products.Keywords: Gastrodia elata, α-Gastrodin, Anti-aging, CGTase, Ultraviolet B (UVB) irradiation, Matrix metalloproteinase, Procollagen, Normal human dermal fibroblast
New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain
In this paper we show how an infinite system of coupled Toda-type nonlinear
differential equations derived by one of us can be used efficiently to
calculate the time-dependent pair-correlations in the Ising chain in a
transverse field. The results are seen to match extremely well long large-time
asymptotic expansions newly derived here. For our initial conditions we use new
long asymptotic expansions for the equal-time pair correlation functions of the
transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising
model. Using this one can also study the equal-time wavevector-dependent
correlation function of the quantum chain, a.k.a. the q-dependent diagonal
susceptibility in the 2d Ising model, in great detail with very little
computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references
added and minor changes of style. vs3: Corrections made and reference adde
Statistical mechanics of triangulated ribbons
We use computer simulations and scaling arguments to investigate statistical
and structural properties of a semiflexible ribbon composed of isosceles
triangles. We study two different models, one where the bending energy is
calculated from the angles between the normal vectors of adjacent triangles,
the second where the edges are viewed as semiflexible polymers so that the
bending energy is related to the angles between the tangent vectors of
next-nearest neighbor triangles. The first model can be solved exactly whereas
the second is more involved. It was recently introduced by Liverpool and
Golestanian Phys.Rev.Lett. 80, 405 (1998), Phys.Rev.E 62, 5488 (2000) as a
model for double-stranded biopolymers such as DNA. Comparing observables such
as the autocorrelation functions of the tangent vectors and the bond-director
field, the probability distribution functions of the end-to-end distance, and
the mean squared twist we confirm the existence of local twist correlation, but
find no indications for other predicted features such as twist-stretch
coupling, kinks, or oscillations in the autocorrelation function of the
bond-director field.Comment: 10 pages, 13 figures. submitted to PRE, revised versio
Gamma rays and positrons from a decaying hidden gauge boson
We study a scenario that a hidden gauge boson constitutes the dominant
component of dark matter and decays into the standard model particles through a
gauge kinetic mixing. Interestingly, gamma rays and positrons produced from the
decay of hidden gauge boson can explain both the EGRET excess of diffuse gamma
rays and the HEAT anomaly in the positron fraction. The spectra of the gamma
rays and the positrons have distinctive features; the absence of line emission
of the gamma ray and a sharp peak in the positron fraction. Such features may
be observed by the GLAST and PAMELA satellites.Comment: 16 pages, 4 figures, adding PAMELA data, the version accepted by PL
Quasiparticle Interactions in Fractional Quantum Hall Systems: Justification of Different Hierarchy Schemes
The pseudopotentials describing the interactions of quasiparticles in
fractional quantum Hall (FQH) states are studied. Rules for the identification
of incompressible quantum fluid ground states are found, based upon the form of
the pseudopotentials. States belonging to the Jain sequence nu=n/(1+2pn), where
n and p are integers, appear to be the only incompressible states in the
thermodynamic limit, although other FQH hierarchy states occur for finite size
systems. This explains the success of the composite Fermion picture.Comment: RevTeX, 10 pages, 7 EPS figures, submitted fo Phys.Rev.
Thermodynamics of the Anisotropic Spin-1/2 Heisenberg Chain and Related Quantum Chains
The free energy and correlation lengths of the spin-1/2 chain are
studied at finite temperature. We use the quantum transfer matrix approach and
derive non-linear integral equations for all eigenvalues. Analytic results are
presented for the low-temperature asymptotics, in particular for the critical
chain in an external magnetic field. These results are compared to
predictions by conformal field theory. The integral equations are solved
numerically for the non-critical chain and the related spin-1 biquadratic
chain at arbitrary temperature.Comment: 31 pages, LATEX, 5 PostScript figures appended, preprint
cologne-93-471
Semiclassical Quantization for the Spherically Symmetric Systems under an Aharonov-Bohm magnetic flux
The semiclassical quantization rule is derived for a system with a
spherically symmetric potential and an
Aharonov-Bohm magnetic flux. Numerical results are presented and compared with
known results for models with . It is shown that the
results provided by our method are in good agreement with previous results. One
expects that the semiclassical quantization rule shown in this paper will
provide a good approximation for all principle quantum number even the rule is
derived in the large principal quantum number limit . We also discuss
the power parameter dependence of the energy spectra pattern in this
paper.Comment: 13 pages, 4 figures, some typos correcte
Multifunctional metal matrix composites with embedded printed electrical materials fabricated by Ultrasonic Additive Manufacturing
This work proposes a new method for the fabrication of Multifunctional Metal Matrix Composite (MMC) structures featuring embedded printed electrical materials through Ultrasonic Additive Manufacturing (UAM). Printed electrical circuitries combining conductive and insulating materials were directly embedded within the interlaminar region of UAM aluminium matrices to realise previously unachievable multifunctional composites. A specific surface flattening process was developed to eliminate the risk of short circuiting between the metal matrices and printed conductors, and simultaneously reduce the total thickness of the printed circuitry. This acted to improve the integrity of the UAM MMC’s and their resultant mechanical strength. The functionality of embedded printed circuitries was examined via four-point probe measurement. DualBeam Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) milling were used to investigate the microstructures of conductive materials to characterize the effect of UAM embedding energy whilst peel testing was used to quantify mechanical strength of MMC structures in combination with optical microscopy. Through this process, fully functioning MMC structures featuring embedded insulating and conductive materials were realised whilst still maintaining high peel resistances of ca. 70 N and linear weld densities of ca. 90%
- …