702 research outputs found

    ESCIM: A System for the Investigation of Meaningful Motion

    Get PDF
    A language is described whose purpose is the investigation of meaningful motion using Stimulus Response animation techniques. The language is capable of adjusting the shape, size and velocity of an actor in real-time computer animation. Some results are presented showing how it is possible to generate such behaviours as chasing, avoidance and hitting using this animation technique. A set of primitives are presented which we find invaluable in the control of size, stretch and velocity parameters when attempting to produce fluid and meaningful interactions

    Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays

    Get PDF
    Zebrafish (Danio rerio) is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula) revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html)

    A UTF1-based selection system for stable homogeneously pluripotent human embryonic stem cell cultures

    Get PDF
    Undifferentiated transcription factor 1 (UTF1) was identified first in mouse embryonic stem cells and is also expressed in human embryonic and adult stem cells. UTF1 transcription ceases at the onset of differentiation, which clearly distinguishes it from less sensitive pluripotency markers, such as Oct4 or Nanog. We present here two transgenic hESC lines, named ZUN. Each line harbors one copy of the UTF1 promoter/enhancer driving a resistance gene and yielded highly homogeneous cultures under selection pressure, with a larger proportion of Oct4 and Sox2 positive cells. While ZUN cultures, like parental HUES8 cultures, retained the capacity to differentiate into tissues of all three germ layers using a SICD mouse teratoma model, they surprisingly exhibited an increased refractoriness to various differentiation cues in vitro. Together with its small size of only 2.4 kb for the entire cassette, these features render our selection system a powerful novel tool for many stem cell applications and human somatic cell reprogramming strategies

    Zebrafish Whole-Adult-Organism Chemogenomics for Large-Scale Predictive and Discovery Chemical Biology

    Get PDF
    The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly), is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated) aromatic hydrocarbons [P(H)AHs] and estrogenic compounds (ECs), we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology

    Toxicogenomic and Phenotypic Analyses of Bisphenol-A Early-Life Exposure Toxicity in Zebrafish

    Get PDF
    Bisphenol-A is an important environmental contaminant due to the increased early-life exposure that may pose significant health-risks to various organisms including humans. This study aimed to use zebrafish as a toxicogenomic model to capture transcriptomic and phenotypic changes for inference of signaling pathways, biological processes, physiological systems and identify potential biomarker genes that are affected by early-life exposure to bisphenol-A. Phenotypic analysis using wild-type zebrafish larvae revealed BPA early-life exposure toxicity caused cardiac edema, cranio-facial abnormality, failure of swimbladder inflation and poor tactile response. Fluorescent imaging analysis using three transgenic lines revealed suppressed neuron branching from the spinal cord, abnormal development of neuromast cells, and suppressed vascularization in the abdominal region. Using knowledge-based data mining algorithms, transcriptome analysis suggests that several signaling pathways involving ephrin receptor, clathrin-mediated endocytosis, synaptic long-term potentiation, axonal guidance, vascular endothelial growth factor, integrin and tight junction were deregulated. Physiological systems with related disorders associated with the nervous, cardiovascular, skeletal-muscular, blood and reproductive systems were implicated, hence corroborated with the phenotypic analysis. Further analysis identified a common set of BPA-targeted genes and revealed a plausible mechanism involving disruption of endocrine-regulated genes and processes in known susceptible tissue-organs. The expression of 28 genes were validated in a separate experiment using quantitative real-time PCR and 6 genes, ncl1, apoeb, mdm1, mycl1b, sp4, U1SNRNPBP homolog, were found to be sensitive and robust biomarkers for BPA early-life exposure toxicity. The susceptibility of sp4 to BPA perturbation suggests its role in altering brain development, function and subsequently behavior observed in laboratory animals exposed to BPA during early life, which is a health-risk concern of early life exposure in humans. The present study further established zebrafish as a model for toxicogenomic inference of early-life chemical exposure toxicity
    corecore