43 research outputs found

    Acquired cystic disease-associated renal cell carcinoma with PTCH1 mutation: a case report

    Get PDF
    Acquired cystic disease-associated renal cell carcinoma (ACD-RCC) is an extremely rare kidney tumor seen mainly in patients with end-stage renal disease. Currently, there are few reports on this type of tumor. We describe the case of a 58-year-old man who had been receiving peritoneal dialysis for more than nine years due to chronic renal insufficiency and uremia. One year after undergoing left renal clear cell renal cell carcinoma resection, a space-occupying lesion was found in the right kidney for which he underwent right nephrectomy. The histopathology of this tumor showed solid or tubular cell arrangements, with some areas of cyst formation. Vacuoles of varying sizes were present in the cytoplasm, and varying amounts of calcium oxalate crystals were found in the tumor cells or interstitium. The pathological diagnosis was ACD-RCC. Next-generation sequencing detected mutations in the PTCH1, MTOR, FAT1, SOS1, RECQL4, and CDC73 genes in the right renal tumor. This is a rare case of a patient with ACD-RCC in the right kidney and clear cell renal cell carcinoma in the left kidney. The findings suggest that mutations in PTCH1 associated with ACD-RCC may have acted as oncogenic drivers for the development of ACKD-RCC, together with providing insight into mechanisms underlying ACD-RCC development, as well as diagnostic and treatment options

    Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    Get PDF
    Background: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used for WGA: multiple displacement amplification (MDA), degenerate-oligonucleotide-primed PCR (DOP-PCR) and multiple annealing and looping-based amplification cycles (MALBAC). However, a comprehensive comparison of variations detection performance between these WGA methods has not yet been performed. Results: We systematically compared the advantages and disadvantages of different WGA methods, focusing particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of copy-number variations (CNVs). However, MDA had significantly higher genome recovery sensitivity (~84 %) than DOP-PCR (~6 %) and MALBAC (~52 %) at high sequencing depth. MALBAC and MDA had comparable single-nucleotide variations detection efficiency, false-positive ratio, and allele drop-out ratio. We further demonstrated that SCRS data amplified by either MDA or MALBAC from a gastric cancer cell line could accurately detect gastric cancer CNVs with comparable sensitivity and specificity, including amplifications of 12p11.22 (KRAS) and 9p24.1 (JAK2, CD274, and PDCD1LG2). Conclusions: Our findings provide a comprehensive comparison of variations detection performance using SCRS amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to individual experimental needs at single-cell level

    Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Get PDF
    Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR) have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R) laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk

    Novel color-tunable Gd<sub>2</sub>O<sub>2</sub>CN<sub>2</sub>:Tb<sup>3+</sup>, Eu<sup>3+</sup> phosphors: Characterization and photoluminescence properties

    No full text
    International audienceIn this paper, color-tunable Gd2O2CN2:Tb3+, Eu3+ phosphors were obtained by co-doping Eu3+ and Tb3+ ions into Gd2O2CN2 host and singly varying the Eu3+ doping concentration. The characteristics of the crystal structure, photoluminescence lifetime and photoluminescence of Tb3+, Eu3+ single-doped and Tb3+and Eu3+ co-doped Gd2O2CN2, were carefully investigated by XRD, FTIR, PL decay curves and photoluminescence (PL). The results indicated that Tb3+ single-doped Gd2O2CN2 phosphor show a green emission, and by increasing Eu3+ content, Gd2O2CN2:Tb3+, Eu3+ phosphors emit green to orange and then to red light under the excitation of 379 n

    Table2_Identifying key m6A-methylated lncRNAs and genes associated with neural tube defects via integrative MeRIP and RNA sequencing analyses.docx

    No full text
    Objective: N6-methyladenosine (m6A) is a common post-transcriptional modification of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). However, m6A-modified lncRNAs are still largely unexplored. This study aimed to investigate differentially m6A-modified lncRNAs and genes involved in neural tube defect (NTD) development.Methods: Pregnant Kunming mice (9–10 weeks of age) were treated with retinoic acid to construct NTD models. m6A levels and methyltransferase-like 3 (METTL3) expression were evaluated in brain tissues of the NTD models. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were performed on the NovaSeq platform and Illumina HiSeq 2,500 platform, respectively. Differentially m6A-methylated differentially expressed lncRNAs (DElncRNAs) and differentially expressed genes (DEGs) were identified, followed by GO biological process and KEGG pathway functional enrichment analyses. Expression levels of several DElncRNAs and DEGs were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for validation.Results: m6A levels and METTL3 expression levels were significantly lower in the brain tissues of the NTD mouse model than in controls. By integrating MeRIP-seq and RNA-seq data, 13 differentially m6A-methylated DElncRNAs and 170 differentially m6A-methylated DEGs were identified. They were significantly enriched in the Hippo signaling pathway and mannose-type O-glycan biosynthesis. The qRT-PCR results confirmed the decreased expression levels of lncRNAs, such as Mir100hg, Gm19265, Gm10544, and Malat1, and genes, such as Zfp236, Erc2, and Hmg20a, in the NTD group.Conclusion:METTL3-mediated m6A modifications may be involved in NTD development. In particular, decreased expression levels of Mir100hg, Gm19265, Gm10544, Malat1, Zfp236, Erc2, and Hmg20a may contribute to the development of NTD.</p

    Table4_Identifying key m6A-methylated lncRNAs and genes associated with neural tube defects via integrative MeRIP and RNA sequencing analyses.docx

    No full text
    Objective: N6-methyladenosine (m6A) is a common post-transcriptional modification of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). However, m6A-modified lncRNAs are still largely unexplored. This study aimed to investigate differentially m6A-modified lncRNAs and genes involved in neural tube defect (NTD) development.Methods: Pregnant Kunming mice (9–10 weeks of age) were treated with retinoic acid to construct NTD models. m6A levels and methyltransferase-like 3 (METTL3) expression were evaluated in brain tissues of the NTD models. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were performed on the NovaSeq platform and Illumina HiSeq 2,500 platform, respectively. Differentially m6A-methylated differentially expressed lncRNAs (DElncRNAs) and differentially expressed genes (DEGs) were identified, followed by GO biological process and KEGG pathway functional enrichment analyses. Expression levels of several DElncRNAs and DEGs were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for validation.Results: m6A levels and METTL3 expression levels were significantly lower in the brain tissues of the NTD mouse model than in controls. By integrating MeRIP-seq and RNA-seq data, 13 differentially m6A-methylated DElncRNAs and 170 differentially m6A-methylated DEGs were identified. They were significantly enriched in the Hippo signaling pathway and mannose-type O-glycan biosynthesis. The qRT-PCR results confirmed the decreased expression levels of lncRNAs, such as Mir100hg, Gm19265, Gm10544, and Malat1, and genes, such as Zfp236, Erc2, and Hmg20a, in the NTD group.Conclusion:METTL3-mediated m6A modifications may be involved in NTD development. In particular, decreased expression levels of Mir100hg, Gm19265, Gm10544, Malat1, Zfp236, Erc2, and Hmg20a may contribute to the development of NTD.</p
    corecore