83 research outputs found

    Phantom energy of a quenched, prethermal quantum many-body scar state

    Full text link
    Strongly interacting quantum systems can exhibit emergent excitations that differ qualitatively from their microscopic degrees of freedom. Here we study an emergent phenomenon that is intrinsic to such systems far from equilibrium: Namely, the transmutation of attractive interactions into repulsive interactions. We initialize an attractively interacting Bose gas in a highly excited and correlated nonthermal state, quench the confining potential, and measure how the kinetic and total energies evolve after the quench. Although the bare interactions are attractive, the low-energy degrees of freedom evolve as if they repel each other: Thus, their kinetic energy paradoxically decreases as the gas is compressed. We quantify the missing ``phantom'' energy by benchmarking our experimental results against generalized hydrodynamics (GHD) calculations. We present evidence that the missing kinetic energy is stored in very high-momentum modes.Comment: 5 pages, 4 figures with 15-page supplement including 9 figure

    The association between higher FFAs and high residual platelet reactivity among CAD patients receiving clopidogrel therapy

    Get PDF
    BackgroundMetabolic abnormalities are associated with the occurrence, severity, and poor prognosis of coronary artery disease (CAD), some of which affect the antiplatelet efficacy of clopidogrel. Free fatty acids (FFAs) is a biomarker for metabolic abnormalities, and elevated FFAs is observed among CAD patients. Whether FFAs enhances residual platelet reactivity induced by adenosine diphosphate (ADP) while using clopidogrel was unknown. The purpose of our study is exploring the issue.MethodCurrent study included 1,277 CAD patients using clopidogrel and used logistic regression to detect whether the higher level of FFAs is associated with high residual platelet reactivity (HRPR). We additionally performed subgroup and sensitivity analyses to evaluate the stability of the results. We defined HRPR as ADP-induced platelet inhibition rate (ADPi) < 50% plus ADP-induced maximum amplitude (MAADP) > 47 mm.Results486 patients (38.1%) showed HRPR. The proportion of HRPR among patients with higher FFAs (>0.445 mmol/L) is greater than among patients with lower FFAs (46.4% vs. 32.6%, P < 0.001). Multivariate logistic regression demonstrated that higher FFAs (>0.445 mmol/L) is independently associated with HRPR (adjusted OR = 1.745, 95% CI, 1.352–2.254). After subgroup and sensitivity analyses, the results remained robust.ConclusionThe higher level of FFAs enhances residual platelet reactivity induced by ADP and is independently associated with clopidogrel HRPR

    Spatio-temporal characteristics and determinants of anthropogenic nitrogen and phosphorus inputs in an ecologically fragile karst basin: Environmental responses and management strategies

    Get PDF
    Excessive nitrogen and phosphorus inputs to land and subsequent export to water via runoff leads to aquatic ecosystem deterioration. The WRB is the world’s largest karst basin which is characterized by a fragile ecosystem coupling with high population pressure, and the transformation of intensive agriculture. Quantifying different sources of pollution in karst regions is challenging due to the complexity of landscape topography and geology coupled with high transmissivity and connectivity of subsurface hydrological systems. This results in large uncertainty associated with nitrogen (N) and phosphorus (P) flow pathways. This combination of factors contributes to the WRB being a high priority for quantitatively understanding the contribution of regional nutrient inputs and those of other major water quality determinants. Here we applied the latest statistical data (2000–2018) and simple quasi-mass-balance methods of net anthropogenic nitrogen and phosphorus inputs (NANI and NAPI) to estimate spatio-temporal heterogeneity of N and P inputs. The results show that while NANI and NAPI are first decreasing, this is followed by an increasing trend during 2000–2018, with average values of 11262.06 ± 2732 kg N km− 2 yr−1 and 2653.91 ± 863 kg P km−2 yr−1 respectively. High N and P concentrations in the river drainage network are related to the spatial distribution of excessive inputs of N and P. Rapid urbanization, livestock farming and the conflicts between economic development and lagged-environmental management are the main reasons for the incremental regional N and P inputs. Management decisions on nutrient pollution in karst regions need careful consideration to reduce ecological impacts and contamination of karst aquifers. This study provides new insight for policy and decision making in the WRB, highlighting policy options for managing nutrient inputs and providing recommendations for closing the science-policy divide

    Astroglial-Kir4.1 in Lateral Habenula Drives Neuronal Bursts to Mediate Depression

    Get PDF
    International audienceEnhanced bursting activity of neurons in the lateral habenula (LHb) is essential in driving depression-like behaviours, but the cause of this increase has been unknown. Here, using a high-throughput quantitative proteomic screen, we show that an astroglial potassium channel (Kir4.1) is upregulated in the LHb in rat models of depression. Kir4.1 in the LHb shows a distinct pattern of expression on astrocytic membrane processes that wrap tightly around the neuronal soma. Electrophysiology and modelling data show that the level of Kir4.1 on astrocytes tightly regulates the degree of membrane hyperpolarization and the amount of bursting activity of LHb neurons. Astrocyte-specific gain and loss of Kir4.1 in the LHb bidirectionally regulates neuronal bursting and depression-like symptoms. Together, these results show that a glia–neuron interaction at the perisomatic space of LHb is involved in setting the neuronal firing mode in models of a major psychiatric disease. Kir4.1 in the LHb might have potential as a target for treating clinical depression

    Conservation of Orbital Angular Momentum in Degenerate Four-wave Mixing via Rubidium Vapor

    No full text
    We present an experimental platform which can generate quantum-correlated beams with Orbital Angular Momentum (OAM) via degenerate Four-Wave Mixing (FWM) in Rubidium vapor. We further investigated the conservation of OAM before and after FWM by performing LG mode decomposition using interferometer. To compare our experimental result with theoretical prediction, we simulated a simplified version of our set up. Moreover, we used this toy model to study the conservation of radial and angular intensity profile through changing parameters limited by our set up. In general, we found that FWM preserves most information consisted in OAM, but has a rather loose control over the information stored in radial profile
    • …
    corecore