15 research outputs found

    Stability and convergence analysis of high-order numerical schemes with DtN-type absorbing boundary conditions for nonlocal wave equations

    Full text link
    The stability and convergence analysis of high-order numerical approximations for the one- and two-dimensional nonlocal wave equations on unbounded spatial domains are considered. We first use the quadrature-based finite difference schemes to discretize the spatially nonlocal operator, and apply the explicit difference scheme to approximate the temporal derivative to achieve a fully discrete infinity system. After that, we construct the Dirichlet-to-Neumann (DtN)-type absorbing boundary conditions (ABCs) to reduce the infinite discrete system into a finite discrete system. To do so, we first adopt the idea in [Du, Zhang and Zheng, \emph{Commun. Comput. Phys.}, 24(4):1049--1072, 2018 and Du, Han, Zhang and Zheng, \emph{SIAM J. Sci. Comp.}, 40(3):A1430--A1445, 2018] to derive the Dirichlet-to-Dirichlet (DtD)-type mappings for one- and two-dimensional cases, respectively. We then use the discrete nonlocal Green's first identity to achieve the discrete DtN-type mappings from the DtD-type mappings. The resulting DtN-type mappings make it possible to perform the stability and convergence analysis of the reduced problem. Numerical experiments are provided to demonstrate the accuracy and effectiveness of the proposed approach.Comment: 26 pages, 4 figure

    GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for PINNs

    Full text link
    With recent study of the deep learning in scientific computation, the PINNs method has drawn widespread attention for solving PDEs. Compared with traditional methods, PINNs can efficiently handle high-dimensional problems, while the accuracy is relatively low, especially for highly irregular problems. Inspired by the idea of adaptive finite element methods and incremental learning, we propose GAS, a Gaussian mixture distribution-based adaptive sampling method for PINNs. During the training procedure, GAS uses the current residual information to generate a Gaussian mixture distribution for the sampling of additional points, which are then trained together with history data to speed up the convergence of loss and achieve a higher accuracy. Several numerical simulations on 2d to 10d problems show that GAS is a promising method which achieves the state-of-the-art accuracy among deep solvers, while being comparable with traditional numerical solvers

    Analysis of a One-Dimensional Nonlocal Quasi-Continuum Method

    Full text link

    Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Get PDF
    The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore