939 research outputs found

    Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells

    Get PDF
    AbstractCaveolin is a principal component of caveolae membranes. It has been demonstrated that the interaction of the caveolin scaffolding domain with signaling molecules can functionally inhibit the activity of these molecules. Taxol is an antitumor agent that suppresses microtubule dynamics and binds to microtubules thereby stabilizing them against depolymerization. The drug also has been implicated in the induction of apoptosis through activation of components in signal transduction cascades. Here we have investigated the role of caveolin in the development of drug resistance by examining the expression of caveolins in low- and high-level drug-resistant cell lines. Caveolin-1, but not caveolin-2, was upregulated in highly multidrug resistant SKVLB1 cells that express high levels of P-glycoprotein, and in low-level Taxol-resistant A549 cell lines that express low amounts of P-glycoprotein. Two drug-resistant A549 cell lines (one 9-fold resistant to Taxol and the other 1.5-fold resistant to epothilone B), both of which express no P-glycoprotein, demonstrate a significant increase in the expression of caveolin-1. These results indicate that in low-level epothilone B- or Taxol-resistant A549 cells, increased caveolin-1 expression occurs independently of P-glycoprotein expression. Electron microscopic studies clearly demonstrate the upregulation of caveolae organelles in Taxol-resistant A549 cells. Upregulation of caveolin-1 expression in drug-sensitive A549 cells was observed acutely beginning 48 h after incubation with 10 nM Taxol. Thus, caveolin-1 may play a role in the development of Taxol resistance in A549 cells

    Impact of Multiple Scattering on Longwave Radiative Transfer Involving Clouds

    Full text link
    General circulation models (GCMs) are extensively used to estimate the influence of clouds on the global energy budget and other aspects of climate. Because radiative transfer computations involved in GCMs are costly, it is typical to consider only absorption but not scattering by clouds in longwave (LW) spectral bands. In this study, the flux and heating rate biases due to neglecting the scattering of LW radiation by clouds are quantified by using advanced cloud optical property models, and satellite data from Cloudâ Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Clouds and the Earth’s Radiant Energy System (CERES), and Moderate Resolution Imaging Spectrometer (MODIS) merged products (CCCM). From the products, information about the atmosphere and clouds (microphysical and buck optical properties, and top and base heights) is used to simulate fluxes and heating rates. Oneâ year global simulations for 2010 show that the LW scattering decreases topâ ofâ atmosphere (TOA) upward flux and increases surface downward flux by 2.6 and 1.2 W/m2, respectively, or approximately 10% and 5% of the TOA and surface LW cloud radiative effect, respectively. Regional TOA upward flux biases are as much as 5% of global averaged outgoing longwave radiation (OLR). LW scattering causes approximately 0.018 K/d cooling at the tropopause and about 0.028 K/d heating at the surface. Furthermore, over 40% of the total OLR bias for ice clouds is observed in 350â 500 cmâ 1. Overall, the radiative effects associated with neglecting LW scattering are comparable to the counterpart due to doubling atmospheric CO2 under clearâ sky conditions.Key PointsGlobal impacts of LW scattering are evaluated by using high spatial resolution satelliteâ derived cloud properties and top and base heightsOmitting cloud LW scattering increases annual mean TOA upward flux by 2.6 W/m2 and decreases annual mean surface downward flux by 1.2 W/m2Including LW scattering of clouds in simulations cools the tropopause approximately 0.018 K/d and heats the surface about 0.028 K/dPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141388/1/jame20524_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141388/2/jame20524.pd

    Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles

    Get PDF
    BACKGROUND: Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1) on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. METHODS: Forty weight-matched rats were evenly divided into control (N = 20) and Rg1 (N = 20) groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA) muscles were surgically collected immediately after exercise along with non-exercise rats. RESULTS: Exhaustive exercise significantly (p<0.05) increased the lipid peroxidation of control group, as evidenced by elevated malondialdehyde (MDA) levels. The increased oxidative stress after exercise was also confirmed by decreased reduced glutathione to oxidized glutathione ratio (GSH/GSSG ratio) in control rats. However, these changes were completely eliminated in Rg1 group. Catalase (CAT) and glutathione peroxidase (GPx) activities were significantly (p<0.05) increased by Rg1 in non-exercise rats, while no significant change after exercise. Nevertheless, glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly increased after exercise in Rg1 group. CONCLUSIONS: This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress

    The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.

    Get PDF
    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation

    Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis

    Get PDF
    X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model

    Epigenetic activation of the FLT3 gene by ZNF384 fusion confers a therapeutic susceptibility in acute lymphoblastic leukemia.

    Get PDF
    FLT3 is an attractive therapeutic target in acute lymphoblastic leukemia (ALL) but the mechanism for its activation in this cancer is incompletely understood. Profiling global gene expression in large ALL cohorts, we identify over-expression of FLT3 in ZNF384-rearranged ALL, consistently across cases harboring different fusion partners with ZNF384. Mechanistically, we discover an intergenic enhancer element at the FLT3 locus that is exclusively activated in ZNF384-rearranged ALL, with the enhancer-promoter looping directly mediated by the fusion protein. There is also a global enrichment of active enhancers within ZNF384 binding sites across the genome in ZNF384-rearranged ALL cells. Downregulation of ZNF384 blunts FLT3 activation and decreases ALL cell sensitivity to FLT3 inhibitor gilteritinib in vitro. In patient-derived xenograft models of ZNF384-rearranged ALL, gilteritinib exhibits significant anti-leukemia efficacy as a monotherapy in vivo. Collectively, our results provide insights into FLT3 regulation in ALL and point to potential genomics-guided targeted therapy for this patient population

    MPT0G413, A Novel HDAC6-Selective Inhibitor, and Bortezomib Synergistically Exert Anti-tumor Activity in Multiple Myeloma Cells

    Get PDF
    In multiple myeloma (MM), homeostasis is largely maintained by misfolded protein clearance via the proteasomal and aggresomal pathways. Histone deacetylase 6 (HDAC6) binds polyubiquitinated proteins and dynein motors and transports this protein cargo to the aggresome for further degradation. Accordingly, a combination of an HDAC6 inhibitor and bortezomib (BTZ) could increase ubiquitinated protein accumulation, leading to further apoptosis. Here we evaluated the anti-MM activity of MPT0G413, a novel specific HDAC6 inhibitor, using in vitro and in vivo models. MPT0G413 treatment more significantly inhibited cell growth in MM cells than in normal bone marrow cells. Furthermore, the combination of MPT0G413 and BTZ enhanced polyubiquitinated protein accumulation and synergistically reduced MM viability, increased caspase-3, caspase-8, caspase-9 levels, and cleaved poly (ADP) ribosome polymerase and also inhibited adherence of MM cells to bone marrow stromal cells (BMSC) and reduced VEGF and IL-6 levels and cell growth in a co-culture system. The combination treatment disturbed the bone marrow microenvironment and induced synergic, caspase-dependent apoptosis. Xenograft tumor growth significantly decreased in combination-treated SCID mice. In conclusion, MPT0G413 and BTZ synergistically inhibit MM viability, providing a framework for the clinical evaluation of combined therapies for MM

    Highly reliable GIGA-sized synthetic human therapeutic antibody library construction

    Get PDF
    BackgroundMonoclonal antibodies (mAbs) and their derivatives are the fastest expanding category of pharmaceuticals. Efficient screening and generation of appropriate therapeutic human antibodies are important and urgent issues in the field of medicine. The successful in vitro biopanning method for antibody screening largely depends on the highly diverse, reliable and humanized CDR library. To rapidly obtain potent human antibodies, we designed and constructed a highly diverse synthetic human single-chain variable fragment (scFv) antibody library greater than a giga in size by phage display. Herein, the novel TIM-3-neutralizing antibodies with immunomodulatory functions derived from this library serve as an example to demonstrate the library’s potential for biomedical applications.MethodsThe library was designed with high stability scaffolds and six complementarity determining regions (CDRs) tailored to mimic human composition. The engineered antibody sequences were optimized for codon usage and subjected to synthesis. The six CDRs with variable length CDR-H3s were individually subjected to β-lactamase selection and then recombined for library construction. Five therapeutic target antigens were used for human antibody generation via phage library biopanning. TIM-3 antibody activity was verified by immunoactivity assays.ResultsWe have designed and constructed a highly diverse synthetic human scFv library named DSyn-1 (DCB Synthetic-1) containing 2.5 × 1010 phage clones. Three selected TIM-3-recognizing antibodies DCBT3-4, DCBT3-19, and DCBT3-22 showed significant inhibition activity by TIM-3 reporter assays at nanomolar ranges and binding affinities in sub-nanomolar ranges. Furthermore, clone DCBT3-22 was exceptionally superior with good physicochemical property and a purity of more than 98% without aggregation.ConclusionThe promising results illustrate not only the potential of the DSyn-1 library for biomedical research applications, but also the therapeutic potential of the three novel fully human TIM-3-neutralizing antibodies
    corecore