189 research outputs found

    Detection of SARS-CoV-2 and HHV-8 from a large pericardial effusion in an HIV-positive patient with COVID-19 and clinically diagnosed Kaposi sarcoma: a case report

    Get PDF
    BACKGROUND: Pericardial effusion is a late manifestation of HIV more commonly observed in individuals with depressed CD4 counts. Although Mycobacterium tuberculosis remains to be one of the most frequently identified pathogens in the pericardial fluid among people living with HIV, less commonly described etiologies include SARS-CoV-2 that causes coronavirus disease and human herpesvirus-8 which is associated with Kaposi sarcoma. Isolation of more than one pathogen in normally sterile sites remains challenging and rare. We report the first documentation of both SARS-CoV-2 and HHV-8 in the pericardial fluid. CASE PRESENTATION: We present the case of a young man in his 20s with a recent history of clinically diagnosed pulmonary tuberculosis who was admitted for progressive dyspnea and cough. He had multiple violaceous cutaneous lesions on the face, neck, and trunk and diffused lymphadenopathies. He tested positive for SARS-CoV-2 on admission. The patient was clinically diagnosed with pneumonia, Kaposi sarcoma, and HIV/AIDS. Empiric broad spectrum antimicrobial regimen was subsequently initiated. HIV with low CD4 count was confirmed during hospitalization. Echocardiography revealed a large pericardial effusion, in impending cardiac tamponade. Frond-like fibrin strands, extending to the parietal pericardium, were also observed. Pericardiostomy yielded hemorrhagic, exudative effusion with lymphocytic predominance. SARS-CoV-2 and HHV-8 were detected in the pericardial fluid, and bacterial, fungal, and tuberculous studies were negative. The patient had clinical improvement after pericardial drainage. However, despite our best clinical care, he developed a nosocomial infection leading to clinical deterioration and death. CONCLUSION: Detection of SARS-CoV-2 and HHV-8 in the pericardial fluid is rare, and interpretation of their significance in clinical care is challenging. However, coronavirus disease and Kaposi sarcoma must be considered and adequately addressed in immunocompromised adults presenting with large pericardial effusion

    Detection of SARS-CoV-2 and HHV-8 from a large pericardial effusion in an HIV-positive patient with COVID-19 and clinically diagnosed Kaposi sarcoma: a case report

    Get PDF
    Background: Pericardial effusion is a late manifestation of HIV more commonly observed in individuals with depressed CD4 counts. Although Mycobacterium tuberculosis remains to be one of the most frequently identified pathogens in the pericardial fluid among people living with HIV, less commonly described etiologies include SARS‑CoV‑2 that causes coronavirus disease and human herpesvirus‑8 which is associated with Kaposi sarcoma. Isolation of more than one pathogen in normally sterile sites remains challenging and rare. We report the first documentation of both SARS‑CoV‑2 and HHV‑8 in the pericardial fluid.Case presentation: We present the case of a young man in his 20s with a recent history of clinically diagnosed pul‑monary tuberculosis who was admitted for progressive dyspnea and cough. He had multiple violaceous cutaneous lesions on the face, neck, and trunk and diffused lymphadenopathies. He tested positive for SARS‑CoV‑2 on admission. The patient was clinically diagnosed with pneumonia, Kaposi sarcoma, and HIV/AIDS. Empiric broad spectrum antimi‑crobial regimen was subsequently initiated. HIV with low CD4 count was confirmed during hospitalization. Echocardi‑ography revealed a large pericardial effusion, in impending cardiac tamponade. Frond‑like fibrin strands, extending to the parietal pericardium, were also observed. Pericardiostomy yielded hemorrhagic, exudative effusion with lympho‑cytic predominance. SARS‑CoV‑2 and HHV‑8 were detected in the pericardial fluid, and bacterial, fungal, and tubercu‑lous studies were negative. The patient had clinical improvement after pericardial drainage. However, despite our best clinical care, he developed a nosocomial infection leading to clinical deterioration and death.Conclusion: Detection of SARS‑CoV‑2 and HHV‑8 in the pericardial fluid is rare, and interpretation of their signifi‑cance in clinical care is challenging. However, coronavirus disease and Kaposi sarcoma must be considered and adequately addressed in immunocompromised adults presenting with large pericardial effusion

    Pathways to ischemic neuronal cell death: are sex differences relevant?

    Get PDF
    We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2) is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients

    Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma

    Get PDF
    RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10 CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations

    Whole-genome sequencing of pharmacogenetic drug response in racially diverse children with asthma

    Get PDF
    RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10-7) and suggestive (P \u3c 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and β-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations

    Multi-ancestry genome-wide association study of asthma exacerbations

    Get PDF
    Altres ajuts: European Regional Development Fund "ERDF A way of making Europe"; Allergopharma-EAACI award 2021; SysPharmPedia grant from the ERACoSysMed 1st Joint Transnational Call from the European Union under the Horizon 2020; Sandler Family Foundation; American Asthma Foundation; RWJF Amos Medical Faculty Development Program; National Heart, Lung, and Blood Institute of the National Institutes of Health (R01HL117004, R01HL128439, R01HL135156, X01HL134589, R01HL141992, R01HL141845); National Institute of Health and Environmental Health Sciences (R01ES015794, R21ES24844); National Institute on Minority Health and Health Disparities (NIMHD) (P60MD006902, R01MD010443, R56MD013312); National Institute of General Medical Sciences (NIGMS) (RL5GM118984); Tobacco-Related Disease Research Program (24RT-0025, 27IR-0030); National Human Genome Research Institute (NHGRI) (U01HG009080); GlaxoSmithKline and Utrecht Institute for Pharmaceutical Sciences; Slovenian Research Agency (P3-0067); SysPharmPediA grant, co-financed by the Ministry of Education, Science and Sport Slovenia (MIZS) (C3330-16-500106); NHS Research Scotland; Wellcome Trust Biomedical Resource (099177/Z/12/Z); Genotyping National Centre (CeGEN) CeGen-PRB3-ISCIII (AC15/00015); UK Medical Research Council and Wellcome (102215/2/13/2); University of Bristol; Swedish Heart-Lung Foundation, Swedish Research Council; Region Stockholm (ALF project and database maintenance); NHS Chair of Pharmacogenetics via the UK Department of Health; Innovative Medicines Initiative (IMI) (115010); European Federation of Pharmaceutical Industries and Associations (EFPIA); Spanish National Cancer Research Centre; Fundación Canaria Instituto de Investigación Sanitaria de Canarias (PIFIISC19/17); Erasmus Medical Center; Erasmus University Rotterdam; Netherlands Organization for the Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); Ministry of Education, Culture and Science; Ministry for Health, Welfare and Sports; European Commission (DG XII); Municipality of Rotterdam; German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF); U.S. National Institutes of Health (HL07966); European Social Fund "ESF Investing in your future"; Ministerio de Ciencia, Innovación y Universidades; Universidad de La Laguna (ULL); European Academy of Allergy and Clinical Immunology (EAACI); European Respiratory Society (ERS) (LTRF202101-00861); Ministry of Education, Science and Sport of the Republic of Slovenia (C3330-19-252012); Singapore Ministry of Education Academic Research Fund; Singapore Immunology Network (SIgN); National Medical Research Council (NMRC Singapore); Biomedical Research Council (BMRC Singapore); Agency for Science Technology and Research (A*STAR Singapore, N-154-000-038-001, R-154-000-191-112, R-154-000-404-112, R-154-000-553-112, R-154-000-565-112, R-154-000-630-112, R-154-000-A08-592, R-154-000-A27-597, R-154-000-A91-592, R-154-000-A95-592, R-154-000-B99-114, BMRC/01/1/21/18/077, BMRC/04/1/21/19/315, SIgN-06-006, SIgN-08-020, NMRC/1150/2008, H17/01/a0/008); Sime Darby Technology Centre; First Resources Ltd; Genting Plantation; Olam International; U.S. National Institutes of Health (HL138098).Background: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. Methods: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. Results: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (OR) = 0.82, p = 9.05 × 10 and replication: OR = 0.89, p = 5.35 × 10) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: OR = 0.85, p = 3.10 × 10 and replication: OR = 0.89, p = 1.30 × 10). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. Conclusions: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense

    A genome-wide association and admixture mapping study of bronchodilator drug response in African Americans with asthma

    No full text
    Short-acting β2-adrenergic receptor agonists (SABAs) are the most commonly prescribed asthma medications worldwide. Response to SABAs is measured as bronchodilator drug response (BDR), which varies among racial/ethnic groups in the United States. However, the genetic variation that contributes to BDR is largely undefined in African Americans with asthma. To identify genetic variants that may contribute to differences in BDR in African Americans with asthma, we performed a genome-wide association study (GWAS) of BDR in 949 African-American children with asthma, genotyped with the Axiom World Array 4 (Affymetrix, Santa Clara, CA) followed by imputation using 1000 Genomes phase III genotypes. We used linear regression models adjusting for age, sex, body mass index (BMI) and genetic ancestry to test for an association between BDR and genotype at single-nucleotide polymorphisms (SNPs). To increase power and distinguish between shared vs. population-specific associations with BDR in children with asthma, we performed a meta-analysis across 949 African Americans and 1830 Latinos (total = 2779). Finally, we performed genome-wide admixture mapping to identify regions whereby local African or European ancestry is associated with BDR in African Americans. We identified a population-specific association with an intergenic SNP on chromosome 9q21 that was significantly associated with BDR (rs73650726, p = 7.69 × 10-9). A trans-ethnic meta-analysis across African Americans and Latinos identified three additional SNPs within the intron of PRKG1 that were significantly associated with BDR (rs7903366, rs7070958 and rs7081864, p ≤ 5 × 10-8). Our results failed to replicate in three additional populations of 416 Latinos and 1615 African Americans. Our findings indicate that both population-specific and shared genetic variation contributes to differences in BDR in minority children with asthma, and that the genetic underpinnings of BDR may differ between racial/ethnic groups
    • …
    corecore