612 research outputs found

    Perturbative approach for mass varying neutrinos coupled to the dark sector in the generalized Chaplygin gas scenario

    Get PDF
    We suggest a perturbative approach for generic choices for the universe equation of state and introduce a novel framework for studying mass varying neutrinos (MaVaN's) coupled to the dark sector. For concreteness, we examine the coupling between neutrinos and the underlying scalar field associated with the generalized Chaplygin gas (GCG), a unification model for dark energy and dark matter. It is shown that the application of a perturbative approach to MaVaN mechanisms translates into a constraint on the coefficient of a linear perturbation, which depends on the ratio between a neutrino energy dependent term and scalar field potential terms. We quantify the effects on the MaVaN sector by considering neutrino masses generated by the seesaw mechanism. After setting the GCG parameters in agreement with general cosmological constraints, we find that the squared speed of sound in the neutrino-scalar GCG fluid is naturally positive. In this scenario, the model stability depends on previously set up parameters associated with the equation of state of the universe. Our results suggest that the GCG is a particularly suitable candidate for constructing a stable MaVaN scenario.Comment: 27 pages, 9 figure

    Natural ZZ' model with an inverse seesaw and leptonic dark matter

    Full text link
    We consider a model for a Z'-boson coupled only to baryon minus lepton number and hypercharge. Besides the usual right-handed neutrinos, we add a pair of fermions with a fractional lepton charge, which we therefore call leptinos. One of the leptinos is taken to be odd under an additional Z_2 charge, the other even. This allows for a natural (inverse) seesaw mechanism for neutrino masses. The odd leptino is a candidate for dark matter, but has to be resonantly annihilated by the Z'-boson or the Higgs-boson responsible for giving mass to the former. Considering collider and cosmological bounds on the model, we find that the Z'-boson and/or the extra Higgs-boson can be seen at the LHC. With more pairs of leptinos leptogenesis is possible.Comment: 29 pages, 9 figures. RGE section moved to appendix and other minor corrections applied to matched published versio

    Affleck-Dine leptogenesis via multiscalar evolution in a supersymmetric seesaw model

    Full text link
    A leptogenesis scenario in a supersymmetric standard model extended with introducing right-handed neutrinos is reconsidered. Lepton asymmetry is produced in the condensate of a right-handed sneutrino via the Affleck-Dine mechanism. The LH_u direction develops large value due to a negative effective mass induced by the right-handed sneutrino condensate through the Yukawa coupling of the right-handed neutrino, even if the minimum during the inflation is fixed at the origin. The lepton asymmetry is nonperturbatively transfered to the LH_u direction by this Yukawa coupling.Comment: 19 pages, 3 figures. Revised version for publication. The model was modified to fix some problem

    Electron to Muon Conversion in Low-Energy Electron-Nucleus Scattering

    Full text link
    We present an estimate of the electron to muon conversion cross section in fixed-target elastic electron scattering. The matrix element <μjemμ(0)e><\mu | j_\mathrm{em}^\mu(0) | e> is calculated analytically in two scenarios introducing suitable approximations. We consider on the one hand side the case of three light Dirac neutrinos with CKM-type leptonic mixing and on the other hand a typical see-saw scenario. We evaluate the coulombic contribution to the scattering cross section in the limit of vanishing energy transfer to the nucleus and, thus, obtain a realistic estimate for the total conversion cross section. Although we find that in the see-saw scenario the cross section can be enhanced by as much as twenty orders of magnitude in comparison to the Dirac case, it is still not experimentally accessible.Comment: 9 pages, 1 figur

    Inflation in minimal left-right symmetric model with spontaneous D-parity breaking

    Full text link
    We present a simplest inflationary scenario in the minimal left-right symmetric model with spontaneous D-parity breaking, which is a well motivated particle physics model for neutrino masses. This leads us to connect the observed anisotropies in the cosmic microwave background to the sub-eV neutrino masses. The baryon asymmetry via the leptogenesis route is also discussed briefly.Comment: (v1) 4 pages, 1 figure; (v2) typos corrected; (v3) title and abstract changed, numerical estimates given, minor changes; (v4) 5 pages, relations between the neutrino masses and the CMB fluctuations become more explicit, miscellaneous changes, to appear in Physical Review

    Constraining Nonstandard Neutrino-Electron Interactions

    Get PDF
    We present a detailed analysis on nonstandard neutrino interactions (NSI) with electrons including all muon and electron (anti)-neutrino data from existing accelerators and reactors, in conjunction with the ``neutrino counting'' data (e- e+ -> nu nu gamma) from the four LEP collaborations. First we perform a one-parameter-at-a-time analysis, showing how most constraints improve with respect to previous results reported in the literature. We also present more robust results where the NSI parameters are allowed to vary freely in the analysis. We show the importance of combining LEP data with the other experiments in removing degeneracies in the global analysis constraining flavor-conserving NSI parameters which, at 90 % and 95 % C.L., must lie within unique allowed regions. Despite such improved constraints, there is still substantial room for improvement, posing a big challenge for upcoming experiments.Comment: 19 pages, 4 figures. Final version to appear in Phys. Rev.

    Hard-Thermal-Loop Corrections in Leptogenesis I: CP-Asymmetries

    Full text link
    We investigate hard-thermal-loop (HTL) corrections to the CP-asymmetries in neutrino and, at high temperature, Higgs boson decays in leptogenesis. We pay special attention to the two leptonic quasiparticles that arise at non-zero temperature and find that there are four contributions to the CP-asymmetries, which correspond to the four combinations of the two leptonic quasiparticles in the loop and in the final states. In two additional cases, we approximate the full HTL-lepton propagator with a zero-temperature propagator that employs the thermal lepton mass m_l(T), or the asymptotic thermal lepton mass sqrt{2} m_l(T). We find that the CP-asymmetries in the one-mode approaches differ by up to one order of magnitude from the full two-mode treatment in the interesting temperature regime T \sim M_1. The asymmetry in Higgs boson decays turns out to be two orders of magnitude larger than the asymmetry in neutrino decays in the zero-temperature treatment. The effect of HTL corrections on the final lepton asymmetry are investigated in paper II of this series.Comment: 38 pages, 14 figure

    New Ambiguity in Probing CP Violation in Neutrino Oscillations

    Get PDF
    If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively nonunitary. We show that in this case the neutrino appearance probabilities involve a new CP phase ϕ associated with nonunitarity. This leads to an ambiguity in extracting the "standard" three-neutrino phase δCP, which can survive even after neutrino and antineutrino channels are combined. Its existence should be taken into account in the planning of any oscillation experiment aiming at a robust measurement of δCP

    The importance of flavor in leptogenesis

    Full text link
    We study leptogenesis from the out-of-equilibrium decays of the lightest heavy neutrino N1N_1 in the medium (low) temperature regime, T\lsim 10^{12} GeV (101010^{10} GeV), where the rates of processes mediated by the τ\tau (and μ\mu) Yukawa coupling are non negligible, implying that the effects of lepton flavors must be taken into account. We find important quantitative and qualitative differences with respect to the case where flavor effects are ignored: (i) The cosmic baryon asymmetry can be enhanced by up to one order of magnitude; (ii) The sign of the asymmetry can be opposite to what one would predict from the sign of the total lepton asymmetry ϵ1\epsilon_1; (iii) Successful leptogenesis is possible even with ϵ1=0\epsilon_1=0.Comment: 27 pages, 2 figures. Added 3 reference

    Viable Supersymmetry and Leptogenesis with Anomaly Mediation

    Get PDF
    The seesaw mechanism that explains the small neutrino masses comes naturally with supersymmetric (SUSY) grand unification and leptogenesis. However, the framework suffers from the SUSY flavor and CP problems, and has a severe cosmological gravitino problem. We propose anomaly mediation as a simple solution to all these problems, which is viable once supplemented by the D-terms for U(1)_Y and U(1)_{B-L}. Even though the right-handed neutrino mass explicitly breaks U(1)_{B-L} and hence reintroduces the flavor problem, we show that it lacks the logarithmic enhancement and poses no threat to the framework. The thermal leptogenesis is then made easily consistent with the gravitino constraint.Comment: 5 pages, one figure, uses Revtex4; Discussion on the upper bound on the LSP mass added. The version published in PR
    corecore