183 research outputs found

    The Aharonov-Bohm effect in graphene rings

    Full text link
    This is a review of electronic quantum interference in mesoscopic ring structures based on graphene, with a focus on the interplay between the Aharonov-Bohm effect and the peculiar electronic and transport properties of this material. We first present an overview on recent developments of this topic, both from the experimental as well as the theoretical side. We then review our recent work on signatures of two prominent graphene-specific features in the Aharonov-Bohm conductance oscillations, namely Klein tunneling and specular Andreev reflection. We close with an assessment of experimental and theoretical development in the field and highlight open questions as well as potential directions of the developments in future work.Comment: review article for "Special Issue on Graphene", to appear in "Solid State Communications

    Quantum transport in double-gated graphene devices

    Full text link
    Double-gated graphene devices provide an important platform for understanding electrical and optical properties of graphene. Here we present transport measurements of single layer, bilayer and trilayer graphene devices with suspended top gates. In zero magnetic fields, we observe formation of pnp junctions with tunable polarity and charge densities, as well as a tunable band gap in bilayer graphene and a tunable band overlap in trilayer graphene. In high magnetic fields, the devices' conductance are quantized at integer and fractional values of conductance quantum, and the data are in good agreement with a model based on edge state equilibration at pn interfaces

    Kohn Anomaly in Raman Spectroscopy of Single Wall Carbon Nanotubes

    Full text link
    Phonon softening phenomena of the Γ\Gamma point optical modes including the longitudinal optical mode, transverse optical mode and radial breathing mode in "metallic" single wall carbon nanotubes are reviewed from a theoretical point of view. The effect of the curvature-induced mini-energy gap on the phonon softening which depends on the Fermi energy and chirality of the nanotube is the main subject of this article. We adopt an effective-mass model with a deformation-induced gauge field which provides us with a unified way to discuss the curvature effect and the electron-phonon interaction.Comment: 36 pages, 9 figure

    Effect of charged impurity correlation on transport in monolayer and bilayer graphene

    Full text link
    We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer graphene correlations among impurities induce a crossover of the scaling of the conductivity at higher carrier densities. We show that in the presence of correlation among charged impurities the conductivity depends nonlinearly on the impurity density nin_i and can even increase with nin_i.Comment: 11 pages, 10 figures. arXiv admin note: text overlap with arXiv:1104.066

    Towards Graphene Nanoribbon-based Electronics

    Full text link
    The successful fabrication of single layer graphene has greatly stimulated the progress of the research on graphene. In this article, focusing on the basic electronic and transport properties of graphene nanoribbons (GNRs), we review the recent progress of experimental fabrication of GNRs, and the theoretical and experimental investigations of physical properties and device applications of GNRs. We also briefly discuss the research efforts on the spin polarization of GNRs in relation to the edge states.Comment: 9pages,10figure

    Hysteresis of Electronic Transport in Graphene Transistors

    Full text link
    Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection and chemically driven applications.Comment: 13 pages, 6 Figure

    Faraday rotation in graphene

    Full text link
    We study magneto--optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.Comment: 10 pp; v2: typos corrected and references added, v3, v4: small changes and more reference

    Interplay between edge states and simple bulk defects in graphene nanoribbons

    Full text link
    We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eigenfunctions, as well the dependence of the local density of states (LDOS) on energy and position. We note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential; this energy is that of the impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex

    Electron-Phonon Interactions in Graphene, Bilayer Graphene, and Graphite

    Full text link
    Using first-principles techniques, we calculate the renormalization of the electron Fermi velocity and the vibrational lifetimes arising from electron-phonon interactions in doped bilayer graphene and in graphite and compare the results with the corresponding quantities in graphene. For similar levels of doping, the Fermi velocity renormalization in bilayer graphene and in graphite is found to be approximately 30% larger than that in graphene. In the case of bilayer graphene, this difference is shown to arise from the interlayer interaction. We discuss our findings in the light of recent photoemission and Raman spectroscopy experiments.Comment: 6 pages, 4 figure

    Modeling vacancies and hydrogen impurities in graphene: A molecular point of view

    Full text link
    We have followed a "molecular" approach to study impurity effects in graphene. This is thought as the limiting case of an infinitely large cluster of benzene rings. Therefore, we study several carbon clusters, with increasing size, from phenalene, including three benzene rings, up to coronene 61, with 61 benzene rings. The impurities considered were a chemisorbed H atom, a vacancy, and a substitutional proton. We performed HF and UHF calculations using the STO-3G basis set. With increasing cluster size in the absence of impurities, we find a decreasing energy gap, here defined as the HOMO-LUMO difference. In the case of H chemisorption or a vacancy, the gap does not decrease appreciably, whereas it is substantially reduced in the case of a substitutional proton. The presence of an impurity invariably induces an increase of the density of states near the HOMO level. We find a zero mode only in the case of a substitutional proton. In agreement with experiments, we find that both the chemisorbed H, the substitutional proton, and the C atom near a vacancy acquire a magnetic moment. The relevance of graphene clusters for the design of novel electronic devices is also discussed.Comment: to appear in Phys. Lett.
    corecore