441 research outputs found

    Robust Time Series Chain Discovery with Incremental Nearest Neighbors

    Get PDF
    Time series motif discovery has been a fundamental task to identify meaningful repeated patterns in time series. Recently, time series chains were introduced as an expansion of time series motifs to identify the continuous evolving patterns in time series data. Informally, a time series chain (TSC) is a temporally ordered set of time series subsequences, in which every subsequence is similar to the one that precedes it, but the last and the first can be arbitrarily dissimilar. TSCs are shown to be able to reveal latent continuous evolving trends in the time series, and identify precursors of unusual events in complex systems. Despite its promising interpretability, unfortunately, we have observed that existing TSC definitions lack the ability to accurately cover the evolving part of a time series: the discovered chains can be easily cut by noise and can include non-evolving patterns, making them impractical in real-world applications. Inspired by a recent work that tracks how the nearest neighbor of a time series subsequence changes over time, we introduce a new TSC definition which is much more robust to noise in the data, in the sense that they can better locate the evolving patterns while excluding the non-evolving ones. We further propose two new quality metrics to rank the discovered chains. With extensive empirical evaluations, we demonstrate that the proposed TSC definition is significantly more robust to noise than the state of the art, and the top ranked chains discovered can reveal meaningful regularities in a variety of real world datasets

    Robust Time Series Chain Discovery with Incremental Nearest Neighbors

    Get PDF
    Time series motif discovery has been a fundamental task to identify meaningful repeated patterns in time series. Recently, time series chains were introduced as an expansion of time series motifs to identify the continuous evolving patterns in time series data. Informally, a time series chain (TSC) is a temporally ordered set of time series subsequences, in which every subsequence is similar to the one that precedes it, but the last and the first can be arbitrarily dissimilar. TSCs are shown to be able to reveal latent continuous evolving trends in the time series, and identify precursors of unusual events in complex systems. Despite its promising interpretability, unfortunately, we have observed that existing TSC definitions lack the ability to accurately cover the evolving part of a time series: the discovered chains can be easily cut by noise and can include non-evolving patterns, making them impractical in real-world applications. Inspired by a recent work that tracks how the nearest neighbor of a time series subsequence changes over time, we introduce a new TSC definition which is much more robust to noise in the data, in the sense that they can better locate the evolving patterns while excluding the non-evolving ones. We further propose two new quality metrics to rank the discovered chains. With extensive empirical evaluations, we demonstrate that the proposed TSC definition is significantly more robust to noise than the state of the art, and the top ranked chains discovered can reveal meaningful regularities in a variety of real world datasets.Comment: Accepted to ICDM 2022. This is an extended version of the pape

    Characterization of anti-leukemia components from Indigo naturalis using comprehensive two-dimensional K562/cell membrane chromatography and in silico target identification.

    Get PDF
    Traditional Chinese Medicine (TCM) has been developed for thousands of years and has formed an integrated theoretical system based on a large amount of clinical practice. However, essential ingredients in TCM herbs have not been fully identified, and their precise mechanisms and targets are not elucidated. In this study, a new strategy combining comprehensive two-dimensional K562/cell membrane chromatographic system and in silico target identification was established to characterize active components from Indigo naturalis, a famous TCM herb that has been widely used for the treatment of leukemia in China, and their targets. Three active components, indirubin, tryptanthrin and isorhamnetin, were successfully characterized and their anti-leukemia effects were validated by cell viability and cell apoptosis assays. Isorhamnetin, with undefined cancer related targets, was selected for in silico target identification. Proto-oncogene tyrosine-protein kinase (Src) was identified as its membrane target and the dissociation constant (Kd) between Src and isorhamnetin was 3.81 μM. Furthermore, anti-leukemia effects of isorhamnetin were mediated by Src through inducing G2/M cell cycle arrest. The results demonstrated that the integrated strategy could efficiently characterize active components in TCM and their targets, which may bring a new light for a better understanding of the complex mechanism of herbal medicines

    4-Methyl-N-(9-methyl-9-aza­bicyclo­[3.3.1]non-3-yl)benzamide

    Get PDF
    The asymmetric unit of the title compound, C17H24N2O, contains three independent mol­ecules. In the crystal, mol­ecules are linked by weak N—H⋯O hydrogen bonds into chains parallel to the c axis

    Broad bandwidth of perceptual learning in second-order contrast modulation detection

    Get PDF
    Comparing characteristics of learning in first- and second-order systems might inform us about different neural plasticity in the two systems. In the current study, we aim to determine the properties of perceptual learning in second-order contrast modulation detection in normal adults. We trained nine observers to detect second-order gratings at an envelope modulation spatial frequency of 8 cycles/8 with their nondominant eyes. We found that, although training generated the largest improvements around the trained frequency, contrast sensitivity over a broad range of spatial frequencies also improved, with a 4.09-octave bandwidth of perceptual learning, exhibiting specificity to the trained spatial frequency as well as a relatively large degree of generalization. The improvements in the modulation sensitivity function (MSF) were not significantly different between the trained and untrained eyes. Furthermore, training did not significantly change subjects' ability in detecting firstorder gratings. Our results suggest that perceptual learning in second-order detection might occur at the postchannel level in binocular neurons, possibly through reducing the internal noise of the visual system

    Hyperin up-regulates miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells

    Get PDF
    Objective. To investigate the effects of Hyperin (Hyp) on osteogenic differentiation of MC3T3E1 cells. Methods. Differentially expressed miRNA was screened by miRNA Microarray. miR-7031-5P overexpression and knockdown MC3T3-E1 cell models were constructed by transfecting miR-7031-5P mimics and inhibitor. Alizarin red staining (ARS) assay was used to observe the formation of mineralized nodules in MC3T3-E1 cells. ALP activity was detected by using ALP detection kit. Western blot assay was used to examine the changes in osteogenic differentiation-related proteins. The relationship between miR-7031-5P and Wnt7a was revealed by dual luciferase report experiments. Results. We found that miR-7031-5P was upregulated in MC3T3-E1 cells after Hyp treatment. The results indicated that compared with the untreated group, Hyp promoted the formation of mineralized nodules and the alkaline phosphatase (ALP) activity of MC3T3-E1 cells via overexpressing miR-7031-5P. Besides, elevated miR-7031-5P increased OPN, COL1A1, and Runx2 mRNA expression. More importantly, Wnt7a was identified as the downstream target gene of miR-70315P promoting osteogenic differentiation of MC3T3-E1 cells. Conclusions. Hyp up-regulated miR-7031-5P to promote osteogenic differentiation of MC3T3-E1 cells by targeting Wnt7

    Generation of an infectious clone of HuN4-F112, an attenuated live vaccine strain of porcine reproductive and respiratory syndrome virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nowadays, PRRS has become one of the most economically important infectious diseases of pig worldwide. To better characterize and understand the molecular basis of PRRSV virulence determinants, it would be important to develop the infectious cDNA clones. In this regard, HuN4-F112, a live-attenuated North-American-type PRRSV vaccine strain, could serve as an excellent model.</p> <p>Results</p> <p>In the study, genomic sequence of HuN4-F112, an attenuated vaccine virus derived from the highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) HuN4 strain, was determined and its full-length cDNA was cloned. Capped RNA was transcribed in vitro from the cDNA clone and transfected into BHK-21 cells. The supernatant from transfected monolayers were serially passaged in Marc-145 cells. The rescued virus exhibited a similar growth pattern to its parental virus in Marc-145 cells with peak titers at 48 h post-infection.</p> <p>Conclusion</p> <p>In conclusion, we rescued virus from an infectious cDNA clone of attenuated vaccine. It is possible in the future that a new attenuated PRRSV vaccine with broader specificity and good immunogenicity can be designed in vitro via an infectious cDNA clone platform coupled with validated information on virulence determinants.</p

    Symbolic State Space Optimization for Long Horizon Mobile Manipulation Planning

    Full text link
    In existing task and motion planning (TAMP) research, it is a common assumption that experts manually specify the state space for task-level planning. A well-developed state space enables the desirable distribution of limited computational resources between task planning and motion planning. However, developing such task-level state spaces can be non-trivial in practice. In this paper, we consider a long horizon mobile manipulation domain including repeated navigation and manipulation. We propose Symbolic State Space Optimization (S3O) for computing a set of abstracted locations and their 2D geometric groundings for generating task-motion plans in such domains. Our approach has been extensively evaluated in simulation and demonstrated on a real mobile manipulator working on clearing up dining tables. Results show the superiority of the proposed method over TAMP baselines in task completion rate and execution time.Comment: To be published in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 202

    Association between high-density lipoprotein cholesterol and type 2 diabetes mellitus: dual evidence from NHANES database and Mendelian randomization analysis

    Get PDF
    BackgroundLow levels of high-density lipoprotein cholesterol (HDL-C) are commonly seen in patients with type 2 diabetes mellitus (T2DM). However, it is unclear whether there is an independent or causal link between HDL-C levels and T2DM. This study aims to address this gap by using the The National Health and Nutrition Examination Survey (NHANES) database and Mendelian randomization (MR) analysis.Materials and methodsData from the NHANES survey (2007-2018) with 9,420 participants were analyzed using specialized software. Logistic regression models and restricted cubic splines (RCS) were used to assess the relationship between HDL-C and T2DM incidence, while considering covariates. Genetic variants associated with HDL-C and T2DM were obtained from genome-wide association studies (GWAS), and Mendelian randomization (MR) was used to evaluate the causal relationship between HDL-C and T2DM. Various tests were conducted to assess pleiotropy and outliers.ResultsIn the NHANES study, all groups, except the lowest quartile (Q1: 0.28-1.09 mmol/L], showed a significant association between HDL-C levels and reduced T2DM risk (all P &lt; 0.001). After adjusting for covariates, the Q2 [odds ratio (OR) = 0.67, 95% confidence interval (CI): (0.57, 0.79)], Q3 [OR = 0.51, 95% CI: (0.40, 0.65)], and Q4 [OR = 0.29, 95% CI: (0.23, 0.36)] groups exhibited average reductions in T2DM risk of 23%, 49%, and 71%, respectively. In the sensitivity analysis incorporating other lipid levels, the Q4 group still demonstrates a 57% reduction in the risk of T2DM. The impact of HDL-C levels on T2DM varied with age (P for interaction = 0.006). RCS analysis showed a nonlinear decreasing trend in T2DM risk with increasing HDL-C levels (P = 0.003). In the MR analysis, HDL-C levels were also associated with reduced T2DM risk (OR = 0.69, 95% CI = 0.52-0.82; P = 1.41 × 10-13), and there was no evidence of pleiotropy or outliers.ConclusionThis study provides evidence supporting a causal relationship between higher HDL-C levels and reduced T2DM risk. Further research is needed to explore interventions targeting HDL-C levels for reducing T2DM risk

    The association between systemic immune-inflammation index and chronic obstructive pulmonary disease in adults aged 40 years and above in the United States: a cross-sectional study based on the NHANES 2013–2020

    Get PDF
    BackgroundInflammation is the core of Chronic obstructive pulmonary disease (COPD) development. The systemic immune-inflammation index (SII) is a new biomarker of inflammation. However, it is currently unclear what impact SII has on COPD. This study aims to explore the relationship between SII and COPD.MethodsThis study analyzed patients with COPD aged ≥40 years from the National Health and Nutrition Examination Survey (NHANES) in the United States from 2013 to 2020. Restricted Cubic Spline (RCS) models were employed to investigate the association between Systemic immune-inflammation index (SII) and other inflammatory markers with COPD, including Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR). Additionally, a multivariable weighted logistic regression model was utilized to assess the relationship between SII, NLR and PLR with COPD. To assess the predictive values of SII, NLR, and PLR for COPD prevalence, receiver operating characteristic (ROC) curve analysis was conducted. The area under the ROC curve (AUC) was used to represent their predictive values.ResultsA total of 10,364 participants were included in the cross-sectional analysis, of whom 863 were diagnosed with COPD. RCS models observed non-linear relationships between SII, NLR, and PLR levels with COPD risk. As covariates were systematically adjusted, it was found that only SII, whether treated as a continuous variable or a categorical variable, consistently remained positively associated with COPD risk. Additionally, SII (AUC = 0.589) slightly outperformed NLR (AUC = 0.581) and PLR (AUC = 0.539) in predicting COPD prevalence. Subgroup analyses revealed that the association between SII and COPD risk was stable, with no evidence of interaction.ConclusionSII, as a novel inflammatory biomarker, can be utilized to predict the risk of COPD among adults aged 40 and above in the United States, and it demonstrates superiority compared to NLR and PLR. Furthermore, a non-linear association exists between SII and the increased risk of COPD
    corecore