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Comparing characteristics of learning in first- and second-
order systems might inform us about different neural
plasticity in the two systems. In the current study, we aim
to determine the properties of perceptual learning in
second-order contrast modulation detection in normal
adults. We trained nine observers to detect second-order
gratings at an envelope modulation spatial frequency of 8
cycles/8 with their nondominant eyes. We found that,
although training generated the largest improvements
around the trained frequency, contrast sensitivity over a
broad range of spatial frequencies also improved, with a
4.09-octave bandwidth of perceptual learning, exhibiting
specificity to the trained spatial frequency as well as a
relatively large degree of generalization. The
improvements in the modulation sensitivity function
(MSF) were not significantly different between the trained
and untrained eyes. Furthermore, training did not
significantly change subjects’ ability in detecting first-
order gratings. Our results suggest that perceptual

learning in second-order detection might occur at the
postchannel level in binocular neurons, possibly through
reducing the internal noise of the visual system.

Introduction

It is widely accepted that perceptual learning can
generate long-lasting visual performance improvements
in adults. Such training-induced plasticity has been
established in a variety of visual tasks, ranging from
simple luminance-contrast detection (Huang, Zhou, &
Lu, 2008; Sowden, Rose, & Davies, 2002; Zhou et al.,
2006), orientation identification (Schoups, Vogels, &
Orban, 1995; Shiu & Pashler, 1992), motion detection
(Hou et al., 2011; Huang, Lu, Tjan, Zhou, & Liu, 2007;
Watanabe, Náñez, & Sasaki, 2001), spatial frequency
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learning (Astle, Webb, & McGraw, 2010), and direc-
tion discrimination (Ball & Sekuler, 1987; Liu & Vaina,
1998), to more complex tasks such as texture discrim-
ination (Karni & Sagi, 1991), contour judgment
(McKendrick & Battista, 2013; Rubin, Nakayama, &
Shapley, 1997), face identification (Gold, Bennett, &
Sekuler, 1999), and video game playing (Green &
Bavelier, 2003; Li et al., 2013; Li, Ngo, Nguyen, & Levi,
2011).

In most of these studies, the stimuli are defined by
luminance variations that are processed by the first-
order system through spatiotemporal frequency chan-
nels in the primary visual cortex (Campbell & Robson,
1968; Shapley & Lennie, 1985). Visual stimuli can also
be defined by feature variations, such as contrast (Dakin
& Mareschal, 2000; Schofield & Georgeson, 2003),
texture (Cavanagh & Mather, 1989; Regan, 2000; Sutter
& Graham, 1995; Werkhoven, Sperling, & Chubb,
1993), and orientation (Larsson, Landy, & Heeger,
2006) modulations that are processed by the second-
order system (Chubb & Sperling, 1989; Lu & Sperling,
1995) through initial linear filtering, rectification, and
second-stage linear filters (Baker, 1999; Chubb &
Sperling, 1988, 1989; Wilson, 1999). The initial linear-
filter stage of second-order processing is usually
associated with cortical processing in V1; the second
linear-filter stage is usually associated with cortical
processing in V2 or higher-level cortical areas (Lin &
Wilson, 1996). A number of psychophysical and
physiological studies have provided evidence for the
existence of dedicated pathways for first-order and
second-order processing (Lu & Sperling, 1995, 2001;
McGraw, Levi, & Whitaker, 1999; Nishida, Ledgeway,
& Edwards, 1997; Schofield & Georgeson, 1999; Vaina,
Cowey, & Kennedy, 1999, but see Allard & Faubert,
2013; Johnston, McOwan, & Buxton, 1992).

Although several studies have evaluated the properties
of perceptual learning with high-order stimuli (Chung,
Li, & Levi, 2008; Dosher & Lu, 2006; McGovern, Webb,
& Peirce, 2012; Petrov & Hayes, 2010; Vaina & Chubb,
2012; Zanker, 1999), the proposed models of first-order
and second-order processing provide a valuable frame-
work to test the level(s) of learning-induced plasticity. If
perceptual learning only occurs in first-order tasks or
occurs for both first- and second-order tasks but with
different properties, it would imply different plasticity in
the two processing systems and provide evidence for
learning at different levels of the visual pathway. For
example, McGovern et al. (2012) found learning to
discriminate orientation can benefit performance on the
curvature task, but less on a global-form task, whereas
learning with a global-form task can generalize to a
curvature task but less on the orientation task. Zanker
(1999) trained observers with both phi-motion (first-
order) and theta-motion (third-order). He found that
whereas learning in theta-motion largely transferred to

phi-motion, learning in phi-motion didn’t benefit per-
ception of theta-motion, suggesting the engagement of at
least partially distinct perceptual learning processes in
first- and third-order motion. Dosher and Lu (2006)
found that learning was evident in second-order texture-
defined letter identification in low levels of external noise
but not in high levels of external noise, and was almost
absent in first-order letter identification. Petrov and
Hayes (2010) investigated perceptual learning with
luminance-modulated (first-order) and contrast-modu-
lated (second-order) stimuli. Consistent with Zanker
(1999), they found that the learning effect fully trans-
ferred from second-order to first-order motion but not
vice versa (Petrov & Hayes, 2010). On the other hand,
Chung, Li, and Levi (2008) trained observers with
amblyopic vision to identify near-threshold luminance-
defined (first-order) and contrast-defined (second-order)
letters and found that the learning effect transferred from
first-order to second-order tasks but not vice versa. Vaina
and Chubb (2012) found no transfer between perceptual
learning of luminance-defined (first-order) global motion
and texture-contrast–defined (second-order) global mo-
tion tasks. Although the results on transfer of perceptual
learning between first- and second-order processing are
mixed, these previous studies suggest that first- and
second-order perceptual learning might be at least
partially independent.

The aim of the current study is to characterize the
bandwidth and eye-specificity of perceptual learning
in second-order contrast-modulation detection and its
impact on first-order grating detection. Two previous
studies on first-order grating detection found that the
effect of learning was largely specific to the trained
spatial frequency and trained eye in both fovea
(Huang et al., 2008) and periphery (Sowden et al.,
2002). To our best knowledge, no study has evaluated
these properties in second-order perceptual learning.
Here, we measured the magnitude of perceptual
learning in second-order contrast-modulation detec-
tion and evaluated transfer of learning to the
untrained eye, untrained spatial frequencies, and a
first-order grating-contrast detection task. We com-
pared the characteristics of perceptual learning in
second-order contrast-modulation detection to pub-
lished results on first-order grating detection to gain
insights into neural plasticity at different levels of
visual processing.

Materials and methods

Observers

Seventeen observers were assigned to the training
(N ¼ 9, 21–23 years) and control (N¼ 8, 21–28 years)
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groups. All observers were naive to the purpose of the
study and had no prior experience in psychophysical
tasks. Written informed consent was obtained from
each observer before the beginning of the study, which
was approved by the Institutional Review Board of
the University of Science and Technology of China
and the Institute of Psychology, Chinese Academy of
Sciences.

Apparatus

All experiments were controlled by a PC computer
running Matlab programs with Version 2.54 of
Psychtoolbox extensions (Brainard, 1997; Pelli, 1997).
Observers, seated with head placed on a chin rest,
viewed all the stimuli on a gamma-corrected Sony
G220 monitor (Sony, Tokyo, Japan) with 1024 · 768-
pixel resolution and 100-Hz frame rate in a dark room.
A videoSwitcher (http://lobes.osu.edu/videoSwitcher/)
was used to combine analog video signals from the red
and blue channels of the computer graphics cards
(model Quadro 2000, Nvidia, Santa Clara, CA) with
different weights using a passive resister network (Pelli
& Zhang, 1991) and an active circuit to deliver identical
video signals to the three channels of the color monitor
and produce a 14-bit gray-level resolution (Li & Lu,
2012; Li, Lu, Xu, Jin, & Zhou, 2003).

Stimuli

Two kinds of stimuli were used in the study: first-
order, luminance-defined vertical sine wave gratings
(Figure 1A) and second-order, contrast-modulated
noise (Figure 1B). The carrier of the second-order
stimuli consisted of binary noise elements with check
size of 0.18 · 0.18 and contrast of 50%. The modulators
were vertical sine waves of various spatial frequencies.
All stimuli were viewed monocularly at fovea with a
3.53-m viewing distance, subtending a 2.48 · 2.48 area.

To minimize edge effects, a 0.458 wide half-Gaussian
ramp was added to the edges of the stimuli to blend
them to the background.

Design

The study consisted of four consecutive stages: a
pretraining practice stage, a pretraining test stage, a
monocular training stage, and a posttraining test
stage. All observers were trained in their nondominant
eyes.

In the pretraining practice stage, observers per-
formed 600–700 practice trials of the first-order and
second-order detection tasks that covered all the
spatial frequencies. In the pre- and posttraining test
stages, modulation sensitivity functions (MSFs) in
second-order contrast-modulation detection were
measured in monocular vision for both eyes. In
addition, the contrast sensitivity function (CSF) in
first-order sine wave grating detection was measured
in the trained eye. Modulation sensitivity, defined as
the reciprocal of modulation threshold at 79.4%
correct in second-order contrast-modulation detec-
tion, was measured at six modulation spatial fre-
quencies (0.5, 1, 2, 4, 8, and 10 cycles/8 in the training
group and 1, 2, 4, 8, 12, and 16 cycles/8 in the control
group) in the second-order task. Note that the slightly
different spatial frequencies were tested in the control
group. Contrast sensitivity, defined as the reciprocal
of contrast threshold at 79.4% correct in first-order
grating detection, was measured at seven spatial
frequencies (1, 2, 4, 8, 16, 24, and 32 cycles/8). A
miniblock design was used to measure the MSFs and
CSFs. Each MSF was measured using 24 miniblocks
of 25 trials each; each CSF was measured with 28
miniblocks. Each miniblock contained stimuli of only
one spatial frequency, and was preceded by a high
contrast demo of the signal in the miniblock. The
order of spatial frequency conditions across mini-
blocks was random. Observers could take an optional
rest when they finished every 100 trials. The testing
sequence of the two MSFs and one CSF was
counterbalanced across observers.

In the training stage, observers practiced in a second-
order contrast modulation detection task using their
nondominant eye. The modulation spatial frequency of
the second-order gratings was fixed at 8 cycles/8. A
three-down one-up staircase procedure, with a step size
equal to 10% of the current modulation depth of the
stimulus, was used to track observers’ threshold at
79.4% accuracy. Each observer was trained for 10
sessions on separate days, with 720 trials per session.
Observers were allowed to take an optional break when
they finished every 120 trials.

Figure 1. Illustration of the first-order (A) and second-order (B)

stimuli.
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Procedure

A two-interval forced-choice procedure was used in
all the measurements. A typical presentation sequence
in each trial consisted of a 420-ms fixation cross
signalled by a brief tone in the end, the first stimulus
interval, a 420-ms interstimulus interval (ISI) signalled
by a brief tone in the end, the second stimulus interval,
and a blank screen until response. In the first-order
grating-detection task, each stimulus interval lasted 100
ms; a first-order grating was only presented in one of
the two randomly chosen intervals, with no stimulus in
the other interval. In the second-order contrast-
modulation detection task, each interval lasted 300 ms;
a second-order contrast-modulation stimulus was
presented in one of the two randomly chosen intervals;
the other interval contained only carrier noise (no
modulation). The observer responded with a key press
to indicate if the grating was presented in the first or
second interval. The next trial started immediately after
the response.

Data analysis

Post- and pretraining MSFs and CSFs were com-
pared using within-subject analysis of variance (AN-
OVA). Post- and pretraining performance at the
trained spatial frequency was compared using two-
tailed paired t tests. The magnitude of modulation
sensitivity improvements in the two eyes across the six

tested spatial frequencies was compared using within-
subject ANOVA.

Improvement in contrast sensitivity at the trained
spatial frequency was defined as:

I ¼ 20·log10

Post measure

Pre measure

� �
dB: ð1Þ

The pretraining MSFs and CSFs were fitted with a
double-parabolic function; the posttraining MSFs and
CSFs were fitted by adding a Gaussian function to each
pretraining parabolic function to model the improve-
ments in modulation and contrast sensitivities. The
bandwidth of perceptual learning was then derived
from the standard deviation of the Gaussian function
(Huang et al., 2008).

Results

Observers were trained in a monocular 8 cycles/8
second-order contrast-modulation detection task in
their nondominant eye for ten days. Prior to and after
training, MSFs in second-order contrast-modulation
detection were measured in monocular vision for both
eyes. In addition, CSF in first-order sinewave grating
detection was measured in the trained eye.

Improvements at the trained modulation spatial
frequency

Training in monocular second-order contrast mod-
ulation resulted in significant modulation sensitivity
improvements at the trained frequency, t(8)¼ 4.89, p¼
0.001, two-tailed. The average improvement was 4.34
6 0.89 dB (SEM, same in the rest of the paper). The
average learning curve is shown in Figure 2. Taking the
pre- and posttraining measurements of second-order
modulation sensitivity into account, training improved
contrast modulation sensitivity (MS, the reciprocal of
the detection threshold) by an average of 0.16 log units
per log session (r2¼ 0.83, p , 0.0001).

Bandwidth of perceptual learning

Although training took place in a single modulation
spatial frequency, measurements of the second-order
MSF before and after training enabled us to determine
performance improvements in a wide range of spatial
frequencies. As shown in Figure 3, training at a single
modulation frequency of 8 cycles/8 induced a significant
improvement of the entire MSF. Averaged over
observers and spatial frequencies, MS improved by 2.57
6 0.33 dB. A within-subject ANOVA revealed that

Figure 2. Average learning curve of nine observers. The first and

last points were derived from the pre- and posttraining

measurements of MSF, respectively. The solid line represents

linear regression with a slope of 0.16, explaining 83% of the

variance ( p , 0.0001). Error bars stand for SEM.
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modulation sensitivity varied significantly with both
spatial frequency, F(5, 40) ¼ 50.57, p , 0.0001, and
training, F(1, 8)¼ 24.88, p¼ 0.001, with no significant
interaction, F(5, 40) ¼ 1.18, p ¼ 0.33. The results
suggest a relatively broad transfer of learning across
spatial frequencies.

Subtracting the pretraining MSF from the post-
training MSF allowed us to evaluate transfer of
perceptual learning at 8 cycles/8 to other untrained
spatial frequencies and estimate the bandwidth of
perceptual learning in second-order modulation detec-
tion. The average improvement curve is shown in
Figure 3 as a thin purple line. The bandwidth of the
improvement curve is 4.09 octaves, which is signifi-
cantly broader than both the typical 1–2 octave channel
bandwidth in second-order processing (Arsenault &
Wilkinson, 1999; Reynaud & Hess, 2012; Westrick,
Henry, & Landy, 2013) and the reported 1–2 octaves
bandwidth of perceptual learning in first-order grating
detection (Huang et al., 2008; Sowden et al., 2002;
Zhou et al., 2006).

Improvement of the MSF in the untrained eye

The pre- and posttraining MSFs in the untrained
eye are shown in Figure 4. Obviously, learning
transferred significantly to the untrained eye. Modu-
lation sensitivity at 8 cycles/8 (i.e., the trained

frequency) in the untrained eye improved by 3.21 6
1.32 dB following training, t(8)¼ 2.93, p¼ 0.019, two-
tailed, which was not significantly different from that
in the trained eye, t(8)¼�0.525, p¼ 0.614, two-tailed.
Averaged across observers and spatial frequencies,
MS improved 1.54 6 0.41 dB. A within-subject
ANOVA also revealed that MS varied significantly
with both spatial frequency, F (5, 40) ¼ 27.79, p ,
0.0001, and training, F(1, 8)¼ 5.92, p¼ 0.041, with no
significant interaction, F(5, 40) ¼ 1.01, p ¼ 0.42. The
bandwidth of the improvement curve (purple line in
Figure 4) is 3.88 octaves. The average magnitude of
modulation sensitivity improvement across all the
spatial frequencies in the trained eye did not differ
significantly from that in the untrained eye, F(1, 16)¼
1.63, p ¼ 0.22.

Improvement in the untrained first-order
detection task

To evaluate transfer of perceptual learning in the
second-order system to the first-order system, we
obtained pre- and posttraining contrast sensitivity
functions in the trained eye (Figure 5). Clearly, training
in second-order contrast-modulation detection didn’t
generate any significant improvement in first-order
grating detection, F(1, 8)¼ 0.028, p¼ 0.87. The average
magnitude of improvement in contrast sensitivity
across observers and spatial frequencies was 0.40 6
0.32 dB.

Figure 3. The average MSFs before and after training (thick red

and blue lines; left ordinate) and the difference between the

best-fitting post- and pretraining MSFs (thin purple line; right

ordinate) in the trained eye. . symbols represent the

pretraining performance; m symbols represent the posttraining

performance. Error bars, SEM. The pretraining MSF was fitted

with a double-parabolic function, and the posttraining MSF was

fitted by adding a Gaussian function that resembles learning-

induced improvements to the best-fitting pretraining function.

Figure 4. Average MSFs before and after training in the

untrained eye. . symbols represent the pretraining perfor-

mance; m symbols represent the posttraining performance.

Error bars, SEM. The solid lines represent curves fitted with a

double-parabola function (pretraining MSF) and a double-

parabola plus Gaussian function (posttraining). See Materials

and methods for details.
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Performance of the control group

To rule out the possibility that improvement in
second-order contrast-modulation detection is due to
repeated tests, we also conducted a control experiment
in which observers received no training but the same
pre- and posttraining measurements as the training
group (same measurements, i.e., MSF of two eyes and
CSF of the nondominant eye and same time gap of 10
days between the two sessions). The average MSF of
the nondominant eye, the average MSF of the
dominant eye, and the average CSF of the nondomi-
nant eye are plotted in Figure 6A through C,
respectively. Obviously, test–retest did not produce any
significant improvement in any of these measures (all p
. 0.5). The average magnitude of improvement in
modulation sensitivity across observers and spatial
frequencies was 0.18 6 3.23 dB,�0.46 6 3.38 dB, and
1.48 6 3.45 dB for second-order detection in the
nondominant eye, second-order detection in the dom-
inant eye, and first-order detection in the nondominant
eye, respectively.

Discussion

In the current study, we investigated the specificity
and generalizability of perceptual learning in second-
order contrast-modulation detection. We show that
training in second-order contrast-modulation detection
in a fixed spatial frequency in the nondominant eye

significantly improved modulation sensitivity at the
trained spatial frequency (4.34 dB). Training also
increased modulation sensitivity over a wide range of
spatial frequencies in the trained eye (average im-
provement of 2.57 dB; learning bandwidth: 4.09
octaves) and the untrained eye (average improvement
of 1.54 dB; learning bandwidth: 3.88 octaves), with no
significant difference between the improvements in the
two eyes. In addition, we found that training in second-
order contrast-modulation detection did not benefit
performance in first-order grating detection.

In our study, white noise was used as a carrier for the
second-order stimuli. Due to black-white asymmetry in
visual processing (Lu & Sperling, 2012; Schofield &
Georgeson, 2003), such stimuli may potentially contain
first-order luminance contaminations. A detailed analy-
sis based on the estimated magnitude of black-white
asymmetry for comparable stimuli in Lu and Sperling
(2012) revealed that first-order contamination in our
second-order stimuli in all the tested spatial frequencies
was much lower than the subject’s contrast detection
threshold; subjects had to rely on second-order mecha-
nisms to perform the second-order contrast-modulation
detection task. Any learning observed in second-order
contrast-modulation detection should have resulted
from learning in the second-order system. The finding
that there is no significant improvement of first-order
CSF before and after training in second-order contrast-
modulation detection provided further support.

In this study, the pretraining modulation sensitivity
was about 2.0 at the training modulation frequency (8
cycles/8). A similar procedure was also used to select
training frequency in studying perceptual learning in
first-order grating detection in several earlier publica-
tions (Huang et al., 2008; Zhou et al., 2012; Zhou et al.,
2006) in which the cutoff spatial frequency of the
contrast-sensitivity function (sensitivity¼ 2.0) was used
as the training frequency. Because cutoff frequencies
and similar amount of practice have been used in both
first- and second-order training, we can compare the
magnitude of improvements in their respective cutoff
frequency: second-order detection, 4.34 dB (current
study); first-order detection, 5.6 dB (Huang et al.,
2008); first-order detection with high-order optical-
aberration correction, 5.39 dB; and first-order detection
without high-order optical-aberration correction: 3.42
dB (Zhou et al., 2012). So the magnitudes of learning
effects are comparable in first- and second-order
detection at their respective cutoff spatial frequencies.

It has been established that perceptual learning in
first-order contrast detection is largely spatial frequen-
cy specific, with a 1–2 octaves bandwidth of learning in
both fovea (Huang et al., 2008; Zhou et al., 2012) and
periphery (Sowden et al., 2002), and comparable to the
estimated bandwidth of first-order spatial frequency
channels (Stromeyer & Klein, 1974). In this paper, we

Figure 5. Average contrast sensitivity functions before and after

training in the trained eye. . symbols represent the pretraining

performance; m symbols represent the posttraining perfor-

mance. Error bars, SEM. The solid lines represent curves fitted

with a double-parabola function.
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found that the bandwidth of perceptual learning (4.09
octaves) in second-order contrast-modulation detection
was much broader than that in first-order grating
detection and the estimated spatial channel bandwidth
of the second-order system (1–2 octaves; Arsenault &
Wilkinson, 1999; Reynaud & Hess, 2012; Westrick et
al., 2013). These results suggest that perceptual learning
of the second-order stimuli, unlike that of the first-
order stimuli, is not channel-specific and can generalize
across spatial frequency channels. On the other hand,
we also show that the learning effect is specific to
second-order processing. This result, together with
previously reported asymmetry of transfer of learning
between first- and second-order stimuli (Chen, Qiu,
Zhang, & Zhou, 2009; Chung et al., 2008; Petrov &
Hayes, 2010; Vaina & Chubb, 2012), indicates that

perceptual learning in first- and second-order process-
ing may occur at different stages of visual processing.

Current theories on perceptual learning have at-
tempted to interpret the mechanism of training-induced
plasticity with reduction of internal noise and/or
retuning of the perceptual template (Dosher & Lu,
1998; Li, Levi, & Klein, 2004; Lu & Dosher, 2004;
Petrov, Dosher, & Lu, 2005). Previous studies on
perceptual learning of first-order stimuli have shown
that for observers with high internal noise (e.g.,
amblyopes; Huang, Tao, Zhou, & Lu, 2007; Xu, Lu,
Qiu, & Zhou, 2006), training at one spatial frequency
induced broad transfer to untrained spatial frequencies
(Huang et al., 2008) through reduction of the high
internal noise in the amblyopic visual system (Huang,
Lu, & Zhou, 2009). There is evidence that the visual

Figure 6. Performance of the control group. DE, dominant eye; nonDE: nondominant eye. Error bars, SEM. The solid lines represent

the best fitting double-parabola function.
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system has higher internal noise in detecting second-
order stimuli than in detecting the first-order stimuli
(Allard & Faubert, 2006). It is quite possible that
training with second-order stimuli detection may
decrease postchannel internal noise and therefore
induce broad transfer across frequencies (Dosher & Lu,
2006). The finding that perceptual learning in second-
order processing was not specific to the trained eye
suggests that such learning may occur after binocular
combination, consistent with the hypothesis that
perceptual learning in second-order detection might
reduce the internal noise of the visual system at the
postchannel level.

We conclude that training in second-order detection
could generate large improvements at the trained
frequency, and the learning effect is specific to second-
order processing, but not to the trained modulation
frequency and eye. Perceptual learning of second-order
detection might occur in binocular neurons, possibly
through internal noise reduction.

Keywords: second-order modulation detection, per-
ceptual learning, modulation sensitivity, generalizability,
specificity
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