203 research outputs found

    Severe Hypoxia Alters Metabolism in Daphnia by Inducing Gluconeogenesis

    Get PDF
    Hypoxia has become a subject of interest among the many environmental stressors as its role in biology is complex and diverse. Hypoxia is a significant low oxygen condition that causes many pathologies and adaptive responses in organisms. It can lead to a moderate or dangerous loss of respiration and can be an indication of tumorigenesis as many tumors lack adequate blood supply. Organisms possess adaptive responses to hypoxia that include hypoxia-inducible factors (HIFs) that activate several downstream pathways that are responsible for altering metabolism and maintaining homeostasis. Within aquatic organisms, hypoxia is an important ecological constraint as oxygen availability within bodies of water can vary greatly over time and space. Therefore, adaptation to hypoxia is likely pervasive, especially in genotypes originating from bodies of water that are prone to hypoxia. Here we report the transcriptional response to acute hypoxia in the clonal freshwater crustacean Daphnia magna. Daphnia were subjected to 1mg/O2 for 12 hours. Then, RNA was extracted, reverse transcribed, and sequenced using Oxford Nanopore MinION. We find that severe hypoxia significantly up-regulates key enzymes in the gluconeogenesis pathway. Additionally, we report genotype-by-environment interactions showing that Daphnia clones from habitats that are hypoxia prone survive better in hypoxia

    Dynamics of the Universal Area-Preserving Map Associated with Period Doubling: Hyperbolic Sets

    Full text link
    It is known that the famous Feigenbaum-Coullet-Tresser period doubling universality has a counterpart for area-preserving maps of {\fR}^2. A renormalization approach has been used in \cite{EKW1} and \cite{EKW2} in a computer-assisted proof of existence of a "universal" area-preserving map FF_* -- a map with orbits of all binary periods 2^k, k \in \fN. In this paper, we consider maps in some neighbourhood of FF_* and study their dynamics. We first demonstrate that the map FF_* admits a "bi-infinite heteroclinic tangle": a sequence of periodic points {zk}\{z_k\}, k \in \fZ, |z_k| \converge{{k \to \infty}} 0, \quad |z_k| \converge{{k \to -\infty}} \infty, whose stable and unstable manifolds intersect transversally; and, for any N \in \fN, a compact invariant set on which FF_* is homeomorphic to a topological Markov chain on the space of all two-sided sequences composed of NN symbols. A corollary of these results is the existence of {\it unbounded} and {\it oscillating} orbits. We also show that the third iterate for all maps close to FF_* admits a horseshoe. We use distortion tools to provide rigorous bounds on the Hausdorff dimension of the associated locally maximal invariant hyperbolic set: 0.7673 \ge {\rm dim}_H(\cC_F) \ge \varepsilon \approx 0.00044 e^{-1797}.$

    An ultra-high gain and efficient amplifier based on Raman amplification in plasma

    Get PDF
    Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr(-1), and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm(-1), exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr(-1) directly backscattered from noise, corresponding to approximate to 10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%

    Novel Mouse Model Reveals Distinct Activity-Dependent and –Independent Contributions to Synapse Development

    Get PDF
    The balanced action of both pre- and postsynaptic organizers regulates the formation of neuromuscular junctions (NMJ). The precise mechanisms that control the regional specialization of acetylcholine receptor (AChR) aggregation, guide ingrowing axons and contribute to correct synaptic patterning are unknown. Synaptic activity is of central importance and to understand synaptogenesis, it is necessary to distinguish between activity-dependent and activity-independent processes. By engineering a mutated fetal AChR subunit, we used homologous recombination to develop a mouse line that expresses AChR with massively reduced open probability during embryonic development. Through histological and immunochemical methods as well as electrophysiological techniques, we observed that endplate anatomy and distribution are severely aberrant and innervation patterns are completely disrupted. Nonetheless, in the absence of activity AChRs form postsynaptic specializations attracting motor axons and permitting generation of multiple nerve/muscle contacts on individual fibers. This process is not restricted to a specialized central zone of the diaphragm and proceeds throughout embryonic development. Phenotypes can be attributed to separate activity-dependent and -independent pathways. The correct patterning of synaptic connections, prevention of multiple contacts and control of nerve growth require AChR-mediated activity. In contrast, myotube survival and acetylcholine-mediated dispersal of AChRs are maintained even in the absence of AChR-mediated activity. Because mouse models in which acetylcholine is entirely absent do not display similar effects, we conclude that acetylcholine binding to the AChR initiates activity-dependent and activity-independent pathways whereby the AChR modulates formation of the NMJ

    Transcription profiling of HCN-channel isotypes throughout mouse cardiac development

    Get PDF
    Hyperpolarization-activated ion channels, encoded by four mammalian genes (HCN1-4), contribute in an important way to the cardiac pacemaker current If. Here, we describe the transcription profiles of the four HCN genes, the NRSF, KCNE2 and Kir2.1 genes from embryonic stage E9.5 dpc to postnatal day 120 in the mouse. Embryonic atrium and ventricle revealed abundant HCN4 transcription but other HCN transcripts were almost absent. Towards birth, HCN4 was downregulated in the atrium and almost vanished from the ventricle. After birth, however, HCN isotype transcription changed remarkably, showing increased levels of HCN1, HCN2 and HCN4 in the atrium and of HCN2 and HCN4 in the ventricle. HCN3 showed highest transcription at early embryonic stages and was hardly detectable thereafter. At postnatal day 10, HCN4 was highest in the sinoatrial node, being twofold higher than HCN1 and fivefold higher than HCN2. In the atrium, HCN4 was similar to HCN1 and sevenfold higher than HCN2. In the ventricle, in contrast, HCN2 was sixfold higher than HCN4, while HCN1 was absent. Subsequently all HCN isotype transcripts declined to lower adult levels, while ratios of HCN isotypes remained stable. In conclusion, substantial changes of HCN isotype transcription throughout cardiac development suggest that a regulated pattern of HCN isotypes is required to establish and ensure a stable heart rhythm. Furthermore, constantly low HCN transcription in adult myocardium may be required to prevent atrial and ventricular arrhythmogenesis

    Population genetics of cancer cell clones: possible implications of cancer stem cells

    Get PDF
    Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.</p

    Successive Increases in the Resistance of Drosophila to Viral Infection through a Transposon Insertion Followed by a Duplication

    Get PDF
    To understand the molecular basis of how hosts evolve resistance to their parasites, we have investigated the genes that cause variation in the susceptibility of Drosophila melanogaster to viral infection. Using a host-specific pathogen of D. melanogaster called the sigma virus (Rhabdoviridae), we mapped a major-effect polymorphism to a region containing two paralogous genes called CHKov1 and CHKov2. In a panel of inbred fly lines, we found that a transposable element insertion in the protein coding sequence of CHKov1 is associated with increased resistance to infection. Previous research has shown that this insertion results in a truncated messenger RNA that encodes a far shorter protein than the susceptible allele. This resistant allele has rapidly increased in frequency under directional selection and is now the commonest form of the gene in natural populations. Using genetic mapping and site-specific recombination, we identified a third genotype with considerably greater resistance that is currently rare in the wild. In these flies there have been two duplications, resulting in three copies of both the truncated allele of CHKov1 and CHKov2 (one of which is also truncated). Remarkably, the truncated allele of CHKov1 has previously been found to confer resistance to organophosphate insecticides. As estimates of the age of this allele predate the use of insecticides, it is likely that this allele initially functioned as a defence against viruses and fortuitously “pre-adapted” flies to insecticides. These results demonstrate that strong selection by parasites for increased host resistance can result in major genetic changes and rapid shifts in allele frequencies; and, contrary to the prevailing view that resistance to pathogens can be a costly trait to evolve, the pleiotropic effects of these changes can have unexpected benefits

    Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes

    Get PDF
    The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2–like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant–pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program

    HIV-Specific Probabilistic Models of Protein Evolution

    Get PDF
    Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what extent these empirical models are generalizable to a very different organism, such as HIV-1–the most extensively sequenced organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1 alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly chosen model introduced phylogenetic error. We argue that our model derivation procedure is immediately applicable to other organisms with extensive sequence data available, such as Hepatitis C and Influenza A viruses
    corecore