292 research outputs found

    Improvement of the transient expression system for production of recombinant proteins in plants

    Get PDF
    An efficient and high yielding expression system is required to produce recombinant proteins. Furthermore, the transient expression system can be used to identify the localization of proteins in plant cells. In this study, we demonstrated that combination of a geminiviral replication and a double terminator dramatically enhanced the transient protein expression level in plants. The GFP protein was expressed transiently in lettuce, Nicotiana benthamiana, tomatoes, eggplants, hot peppers, melons, and orchids with agroinfiltration. Compared to a single terminator, a double terminator enhanced the expression level. A heat shock protein terminator combined with an extensin terminator resulted in the highest protein expression. Transiently expressed GFP was confirmed by immunoblot analysis with anti-GFP antibodies. Quantitative analysis revealed that the geminiviral vector with a double terminator resulted in the expression of at least 3.7 mg/g fresh weight of GFP in Nicotiana benthamiana, approximately 2-fold that of the geminiviral vector with a single terminator. These results indicated that combination of the geminiviral replication and a double terminator is a useful tool for transient expression of the gene of interest in plant cells

    学生服のリサイクルについての提案―“2017第4回繊維リサイクルアイデアコンペティション”の報告―

    Get PDF
    日本繊維機械学会・繊維リサイクル技術研究会が主催となり開催された“2017第4回繊維リサイクルアイデアコンペティション”において,本学科の学生4名が「学生服からできた材料の使い方の提案」として『3WAY防災KABANchan』を発表し,優秀賞とベストプレゼンテーション賞を受賞した。コンペティションへの参加は,本研究室に配属が決まった3年生が「卒業基礎演習」の課題として取り組んだことが始まりである。本稿では,繊維リサイクルアイデアコンペティションの趣旨と衣服のリサイクルの現状について触れながら,今回の提案内容について報告する

    KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector

    Get PDF
    The recent detections of gravitational waves (GWs) reported by LIGO/Virgocollaborations have made significant impact on physics and astronomy. A globalnetwork of GW detectors will play a key role to solve the unknown nature of thesources in coordinated observations with astronomical telescopes and detectors.Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitationalwave Telescope), a new GW detector with two 3-km baseline arms arranged in theshape of an "L", located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan.KAGRA's design is similar to those of the second generations such as AdvancedLIGO/Virgo, but it will be operating at the cryogenic temperature with sapphiremirrors. This low temperature feature is advantageous for improving thesensitivity around 100 Hz and is considered as an important feature for thethird generation GW detector concept (e.g. Einstein Telescope of Europe orCosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GWdetector based on laser interferometry. The installation and commissioning ofKAGRA is underway and its cryogenic systems have been successfully tested inMay, 2018. KAGRA's first observation run is scheduled in late 2019, aiming tojoin the third observation run (O3) of the advanced LIGO/Virgo network. In thiswork, we describe a brief history of KAGRA and highlights of main feature. Wealso discuss the prospects of GW observation with KAGRA in the era of O3. Whenoperating along with the existing GW detectors, KAGRA will be helpful to locatea GW source more accurately and to determine the source parameters with higherprecision, providing information for follow-up observations of a GW triggercandidate
    corecore