24,667 research outputs found

    Large magnetic field-induced spectral weight enhancement of high-energy spin excitations in La1.88Sr0.12CuO4La_{1.88}Sr_{0.12}CuO_{4}

    Full text link
    We report electronic Raman scattering experiments on a superconducting La1.88Sr0.12CuO4{\rm La_{1.88}Sr_{0.12}CuO_{4}} single crystal in a magnetic field. At low temperatures, the spectral weight of the high-energy two-magnon peak increases linearly with field and is amplified by a factor of more than two at 14 T. The effect disappears at elevated temperatures and is not present in undoped La2CuO4{\rm La_{2}CuO_{4}}. This observation is discussed in terms of an electronically inhomogeneous state in which the field enhances the volume fraction of a phase with local antiferromagnetic order at the expense of the superconducting phase.Comment: to appear in PR

    Nearly Instantaneous Alternatives in Quantum Mechanics

    Get PDF
    Usual quantum mechanics predicts probabilities for the outcomes of measurements carried out at definite moments of time. However, realistic measurements do not take place in an instant, but are extended over a period of time. The assumption of instantaneous alternatives in usual quantum mechanics is an approximation whose validity can be investigated in the generalized quantum mechanics of closed systems in which probabilities are predicted for spacetime alternatives that extend over time. In this paper we investigate how alternatives extended over time reduce to the usual instantaneous alternatives in a simple model in non-relativistic quantum mechanics. Specifically, we show how the decoherence of a particular set of spacetime alternatives becomes automatic as the time over which they extend approaches zero and estimate how large this time can be before the interference between the alternatives becomes non-negligible. These results suggest that the time scale over which coarse grainings of such quantities as the center of mass position of a massive body may be extended in time before producing significant interference is much longer than characteristic dynamical time scales.Comment: 12 pages, harvmac, no figure

    Localization Properties of Electronic States in Polaron Model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers

    Get PDF
    We numerically investigate localization properties of electronic states in a static model of poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers with realistic parameters obtained by quantum-chemical calculation. The randomness in the on-site energies caused by the electron-phonon coupling are completely correlated to the off-diagonal parts. In the single electron model, the effect of the hydrogen-bond stretchings, the twist angles between the base pairs and the finite system size effects on the energy dependence of the localization length and on the Lyapunov exponent are given. The localization length is reduced by the influence of the fluctuations in the hydrogen bond stretchings. It is also shown that the helical twist angle affects the localization length in the poly(dG)-poly(dC) DNA polymer more strongly than in the poly(dA)-poly(dT) one. Furthermore, we show resonance structures in the energy dependence of the localization length when the system size is relatively small.Comment: 6 pages, 6 figure

    Fermi edge singularity in a non-equilibrium system

    Full text link
    We report exact results for the Fermi Edge Singularity in the absorption spectrum of an out-of-equilibrium tunnel junction. We consider two metals with chemical potential difference V separated by a tunneling barrier containing a defect, which exists in one of two states. When it is in its excited state, tunneling through the otherwise impermeable barrier is possible. We find that the lineshape not only depends on the total scattering phase shift as in the equilibrium case but also on the difference in the phase of the reflection amplitudes on the two sides of the barrier. The out-of-equilibrium spectrum extends below the original threshold as energy can be provided by the power source driving current across the barrier. Our results have a surprisingly simple interpretation in terms of known results for the equilibrium case but with (in general complex-valued) combinations of elements of the scattering matrix replacing the equilibrium phase shifts.Comment: 4 page

    Magnetoresistance and surface roughness study of the initial growth of electrodeposited Co/Cu multilayers

    Get PDF
    The giant magnetoresistance (GMR) effect has been widely investigated on electrodeposited ferromagnetic/non-magnetic (FM/NM) multilayers generally containing a large number of bilayers. In most applications of the GMR effect, layered structures consisting of a relatively small number of consecutive FM and NM layers are used. It is of great interest, therefore, to investigate the initial stages of GMR multilayer film growth by electrodeposition. In the present work we have extended our previous studies on ED GMR multilayers to layered structures with a total thickness ranging from a few nanometers up to 70 nm. The evolution of the surface roughness and electrical transport properties of such ultrathin ED Co/Cu layered structures was investigated. Various layer combinations were produced including both Co and Cu either as starting or top layers in order (i) to see differences in the nucleation of the first layer and (ii) to trace out the effect of the so called exchange reaction. Special attention was paid to measure the field dependence of the magnetoresistance, MR(H) in order to derive information for the appearance of superparamagnetic regions in the magnetic layers. This proved to be helpful for monitoring the evolution of the layer microstructure at each step of the deposition sequence

    Measurement of temperature profiles in hot gases by emission-absorption spectroscopy Final report

    Get PDF
    Measurement of spectral radiances and absorptances in hot gase

    Measurement of temperature profiles in hot gases and flames

    Get PDF
    Computer program was written for calculation of molecular radiative transfer from hot gases. Shape of temperature profile was approximated in terms of simple geometric forms so profile could be characterized in terms of few parameters. Parameters were adjusted in calculations using appropriate radiative-transfer expression until best fit was obtained with observed spectra

    Quantum shutter approach to tunneling time scales with wave packets

    Full text link
    The quantum shutter approach to tunneling time scales (G. Garc\'{\i }a-Calder\'{o}n and A. Rubio, Phys. Rev. A \textbf{55}, 3361 (1997)), which uses a cutoff plane wave as the initial condition, is extended in such a way that a certain type of wave packet can be used as the initial condition. An analytical expression for the time evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to the width of the packet when the transmission process is in the tunneling regime.Comment: 6 page

    Universal Phase Diagram for High-Piezoelectric Perovskite Systems

    Get PDF
    Strong piezoelectricity in the perovskite-type PbZr(1-x)TixO3 (PZT) and Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) systems is generally associated with the existence of a morphotropic phase boundary (MPB) separating regions with rhombohedral and tetragonal symmetry. An x-ray study of PZN-9%PT has revealed the presence of a new orthorhombic phase at the MPB, and a near-vertical boundary between the rhombohedral and orthorhombic phases, similar to that found for PZT between the rhombohedral and monoclinic phases. We discuss the results in the light of a recent theoretical paper by Vanderbilt and Cohen, which attributes these low-symmetry phases to the high anharmonicity in these oxide systems.Comment: REVTeX file. 4 pages,=A0 4 figures embedde
    corecore