14 research outputs found

    L-2-Hydroxyglutaric aciduria: a report of 29 patients

    No full text
    L-2-hydroxyglutaric aciduria (L2HGA) is a chronic slowly progressive neurodegenerative disease characterized mainly by psychomotor developmental delay and cerebellar dysfunction. We report the clinical, biochemical, and neuroimaging features of 29 patients from 22 families. The mean age at the time of diagnosis was 13.4 years (2.5-32 years). The mean follow-up period of patients was four years (1.5-16 years). The main clinical findings were mental retardation and cerebellar involvement with ataxic gait and intentional tremor. Additional findings were mental retardation, macrocephaly and seizures. Diagnosis was confirmed by increased urinary excretion of L-2-hydroxyglutaric acid in all patients and highly specific magnetic resonance imaging (MRI) pattern showing subcortical leukoencephalopathy with bilateral high signal intensity in dentate nuclei and putamens. During the follow-up period, all patients had a static encephalopathy course. The underlying metabolic defect and the possible role of L-2-hydroxyglutaric acid are studied in a subgroup of these families and under evaluation for publication

    A biochemical, genetic, and clinical survey of autosomal recessive limb girdle muscular dystrophies in Turkey

    No full text
    Autosomal recessive limb girdle muscular dystrophy (LGMD2) is a clinically and genetically heterogenous group of diseases involving at least six different loci. Five genes have already been identified: calpain-3 at LGMD2A (15q15), and four members of the sarcoglycan (SG) complex, alpha-SG at LGMD2D (17q21), beta-SG at LGMD2E (4q12), gamma-SG at LGMD2C (13q12), and delta-SG at LGMD2F (5q33-q34). The gene product at LGMD2B (2p13-p16) is still unknown and at least one other gene is still unmapped. We investigated 20 Turkish families (18 consanguineous) diagnosed as having LGMD2. Most of our patients had onset of symptoms before age 10. The phenotypes varied from severe to benign. We analyzed the SG complex by immunofluorescence and/or western blot. Genotyping was performed using markers defining the six known loci and the suspected genes were screened for mutations. Six of 17 index cases showed deficiency of the SG complex, by immunofluorescence and/or western blot. Seven cases involved one of the known genes of the SG complex (alpha, 2; beta, 1; and gamma, 4 cases), and five mutations were documented in the alpha- and gamma-SG genes. After linkage analysis, 10 families were characterized as having LGMD2A (calpain-3 deficiency), and all mutations were eventually identified. One family was classified as having LGMD2B and 1 family that has normal SGs was linked to the chromosome 5q33-q34 locus (LGMD2F). In 1 family there was no linkage to any of the known LGMD2 loci. It appears that in Turkey, there is a broad spectrum of genes and defects involved in LGMD2. It may be possible to correlate genotype to phenotype in LGMD2. All severe cases belonged to the gamma-SG-deficiency group. Nine calpain-3-deficient cases had intermediate and 1 had moderate clinical courses. The LGMD2B patient had a moderate clinical expression, whereas the LGMD2F case was truly benign

    Individualized prediction of seizure relapse and outcomes following antiepileptic drug withdrawal after pediatric epilepsy surgery

    No full text
    The objective of this study was to create a clinically useful tool for individualized prediction of seizure outcomes following antiepileptic drug withdrawal after pediatric epilepsy surgery. We used data from the European retrospective TimeToStop study, which included 766 children from 15 centers, to perform a proportional hazard regression analysis. The 2 outcome measures were seizure recurrence and seizure freedom in the last year of follow-up. Prognostic factors were identified through systematic review of the literature. The strongest predictors for each outcome were selected through backward selection, after which nomograms were created. The final models included 3 to 5 factors per model. Discrimination in terms of adjusted concordance statistic was 0.68 (95% confidence interval [CI] 0.67-0.69) for predicting seizure recurrence and 0.73 (95% CI 0.72-0.75) for predicting eventual seizure freedom. An online prediction tool is provided on www.epilepsypredictiontools.info/ttswithdrawal. The presented models can improve counseling of patients and parents regarding postoperative antiepileptic drug policies, by estimating individualized risks of seizure recurrence and eventual outcome

    Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation.

    No full text
    Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi-Goutières syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients' cells prevents the accumulation of USP18, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation
    corecore