300 research outputs found

    When Attackers Meet AI: Learning-empowered Attacks in Cooperative Spectrum Sensing

    Full text link
    Defense strategies have been well studied to combat Byzantine attacks that aim to disrupt cooperative spectrum sensing by sending falsified versions of spectrum sensing data to a fusion center. However, existing studies usually assume network or attackers as passive entities, e.g., assuming the prior knowledge of attacks is known or fixed. In practice, attackers can actively adopt arbitrary behaviors and avoid pre-assumed patterns or assumptions used by defense strategies. In this paper, we revisit this security vulnerability as an adversarial machine learning problem and propose a novel learning-empowered attack framework named Learning-Evaluation-Beating (LEB) to mislead the fusion center. Based on the black-box nature of the fusion center in cooperative spectrum sensing, our new perspective is to make the adversarial use of machine learning to construct a surrogate model of the fusion center's decision model. We propose a generic algorithm to create malicious sensing data using this surrogate model. Our real-world experiments show that the LEB attack is effective to beat a wide range of existing defense strategies with an up to 82% of success ratio. Given the gap between the proposed LEB attack and existing defenses, we introduce a non-invasive method named as influence-limiting defense, which can coexist with existing defenses to defend against LEB attack or other similar attacks. We show that this defense is highly effective and reduces the overall disruption ratio of LEB attack by up to 80%

    A compactness based saliency approach for leakages detection in fluorescein angiogram

    Get PDF
    This study has developed a novel saliency detection method based on compactness feature for detecting three common types of leakage in retinal fluorescein angiogram: large focal, punctate focal, and vessel segment leakage. Leakage from retinal vessels occurs in a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. The proposed framework consists of three major steps: saliency detection, saliency refinement and leakage detection. First, the Retinex theory is adapted to address the illumination inhomogeneity problem. Then two saliency cues, intensity and compactness, are proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. Finally, the leaking sites can be detected by masking the vessel and optic disc regions. The effectiveness of this framework has been evaluated by applying it to different types of leakage images with cerebral malaria. The sensitivity in detecting large focal, punctate focal and vessel segment leakage is 98.1, 88.2 and 82.7 %, respectively, when compared to a reference standard of manual annotations by expert human observers. The developed framework will become a new powerful tool for studying retinal conditions involving retinal leakage

    Calculating Intrinsic and Extrinsic Camera Parameters Based on the PnP Problem

    Get PDF
    The classical PnP problem is premised on given intrinsic camera parameters. However, for unknown intrinsic camera parameters, given n space points in a world coordinate system and their coordinates in an image coordinate system, the extrinsic camera parameters can be determined. Regarding the existence and uniqueness of a solution for the classical PnP problem, for 4 control points in a plane and an uncalibrated camera, a set of linear equations can be solved based on the correspondence between the space points and the image points. The results show that this approach is feasible and has high calculation precision

    Preventive Effects of Dendrobium candidum Wall ex Lindl. on the formation of Lung Metastases in BALB/c Mice Injected with 26-M3.1 Colon Carcinoma Cells

    Get PDF
    Dendrobium candidum Wall ex Lindl. (D. candidum) is a traditional Chinese medicine widely used in Asia. The present study has showed that D. candidum exerted an anti-metastatic effect in mice injected with 26-M3.1 colon carcinoma cells. D. candidum showed the most marked tumor inhibitory rate of 64.5% at a dose of 400 mg/kg body weight (b.w). The mRNA and protein expression of Bax in lung tissue of D. candidum-treated mice was shown to be higher as compared with control mice, whereas the mRNA and protein expression of Bcl-2 showed the opposite trend. Decreased mRNA and protein expression of MMP and increased expression of TIMPs was demonstrated in lung tissues by quantitative polymerase chain reaction and western blot assays. D. candidum reduced the serum cytokine levels of IL-6, IL-12, TNF-α and IFN-γ to a greater extent as compared with the control mice, and administration of 400 mg/kg b.w. resulted in a lower serum cytokine levels as compared with mice treated with 200 mg/kg b.w. Eleven compounds were in the D. candidum leaf, of which the functional contents may help to generate novel treatments for the prevention of lung metastases. The results of the present study have demonstrated that D. candidum had a potent in vivo antitumor and anti-metastatic effect in BALB/c mice injected with 26-M3.1 cells

    Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retinal Images

    Get PDF
    Automated detection of blood vessel structures is becoming of crucial interest for better management of vascular disease. In this paper, we propose a new infinite active contour model that uses hybrid region information of the image to approach this problem. More specifically, an infinite perimeter regularizer, provided by using L 2 Lebesgue measure of the γ-neighborhood of boundaries, allows for better detection of small oscillatory (branching) structures than the traditional models based on the length of a feature's boundaries (i.e., H 1 Hausdorff measure). Moreover, for better general segmentation performance, the proposed model takes the advantage of using different types of region information, such as the combination of intensity information and local phase based enhancement map. The local phase based enhancement map is used for its superiority in preserving vessel edges while the given image intensity information will guarantee a correct feature's segmentation. We evaluate the performance of the proposed model by applying it to three public retinal image datasets (two datasets of color fundus photography and one fluorescein angiography dataset). The proposed model outperforms its competitors when compared with other widely used unsupervised and supervised methods. For example, the sensitivity (0.742), specificity (0.982) and accuracy (0.954) achieved on the DRIVE dataset are very close to those of the second observer's annotations

    Intensity and Compactness Enabled Saliency Estimation for Leakage Detection in Diabetic and Malarial Retinopathy

    Get PDF
    Leakage in retinal angiography currently is a key feature for confirming the activities of lesions in the management of a wide range of retinal diseases, such as diabetic maculopathy and paediatric malarial retinopathy. This paper proposes a new saliency-based method for the detection of leakage in fluorescein angiography. A superpixel approach is firstly employed to divide the image into meaningful patches (or superpixels) at different levels. Two saliency cues, intensity and compactness, are then proposed for the estimation of the saliency map of each individual superpixel at each level. The saliency maps at different levels over the same cues are fused using an averaging operator. The two saliency maps over different cues are fused using a pixel-wise multiplication operator. Leaking regions are finally detected by thresholding the saliency map followed by a graph-cut segmentation. The proposed method has been validated using the only two publicly available datasets: one for malarial retinopathy and the other for diabetic retinopathy. The experimental results show that it outperforms one of the latest competitors and performs as well as a human expert for leakage detection and outperforms several state-of-the-art methods for saliency detection

    Saliency Driven Vasculature Segmentation with Infinite Perimeter Active Contour Model

    Get PDF
    Automated detection of retinal blood vessels plays an important role in advancing the understanding of the mechanism, diagnosis and treatment of cardiovascular disease and many systemic diseases, such as diabetic retinopathy and age-related macular degeneration. Here, we propose a new framework for precisely segmenting retinal vasculatures. The proposed framework consists of three steps. A non-local total variation model is adapted to the Retinex theory, which aims to address challenges presented by intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The image is then divided into superpixels, and a compactness-based saliency detection method is proposed to locate the object of interest. For better general segmentation performance, we then make use of a new infinite active contour model to segment the vessels in each superpixel. The proposed framework has wide applications, and the results show that our model outperforms its competitors

    Retinal vessel segmentation:An efficient graph cut approach with Retinex and local phase

    Get PDF
    Our application concerns the automated detection of vessels in retinal images to improve understanding of the disease mechanism, diagnosis and treatment of retinal and a number of systemic diseases. We propose a new framework for segmenting retinal vasculatures with much improved accuracy and efficiency. The proposed framework consists of three technical components: Retinex-based image inhomogeneity correction, local phase-based vessel enhancement and graph cut-based active contour segmentation. These procedures are applied in the following order. Underpinned by the Retinex theory, the inhomogeneity correction step aims to address challenges presented by the image intensity inhomogeneities, and the relatively low contrast of thin vessels compared to the background. The local phase enhancement technique is employed to enhance vessels for its superiority in preserving the vessel edges. The graph cut-based active contour method is used for its efficiency and effectiveness in segmenting the vessels from the enhanced images using the local phase filter. We have demonstrated its performance by applying it to four public retinal image datasets (3 datasets of color fundus photography and 1 of fluorescein angiography). Statistical analysis demonstrates that each component of the framework can provide the level of performance expected. The proposed framework is compared with widely used unsupervised and supervised methods, showing that the overall framework outperforms its competitors. For example, the achieved sensitivity (0:744), specificity (0:978) and accuracy (0:953) for the DRIVE dataset are very close to those of the manual annotations obtained by the second observer

    Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering

    Get PDF
    The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, INSPIRE, IOSTAR, VICAVR, DRIVE and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community
    corecore