82 research outputs found

    Standardization of surface potential measurements of graphene domains

    Get PDF
    We compare the three most commonly used scanning probe techniques to obtain a reliable value of the work function in graphene domains of different thickness. The surface potential (SP) of graphene is directly measured in Hall bar geometry via a combination of electrical functional microscopy and spectroscopy techniques, which enables calibrated work function measurements of graphene domains with values ~4.55+/-0.02 eV and ~4.44+/-0.02eV for single- and bi-layer, respectively. We demonstrate that frequency-modulated Kelvin probe force microscopy (FM-KPFM) provides more accurate measurement of the SP than amplitude-modulated (AM)-KPFM. The discrepancy between experimental results obtained by different techniques is discussed. In addition, we use FM-KPFM for contactless measurements of the specific components of the device resistance. We show a strong non-Ohmic behavior of the electrode-graphene contact resistance and extract the graphene channel resistivity

    A prototype of RK/200 quantum Hall array resistance standard on epitaxial graphene

    Get PDF
    Epitaxial graphene on silicon carbide is a promising material for the next generation of quantum Hall re- sistance standards. Single Hall bars made of graphene have already surpassed their state-of-the-art GaAs based counterparts as an RK/2 (RK = h/e^2) standard, showing at least the same precision and higher break- down current density. Compared to single devices, quantum Hall arrays using parallel or series connection of multiple Hall bars can offer resistance values spanning several orders of magnitude and (in case of parallel connection) significantly larger measurement currents, but impose strict requirements on uniformity of the material. To evaluate the quality of the available material, we have fabricated arrays of 100 Hall bars con- nected in parallel on epitaxial graphene. One out of four devices has shown quantized resistance that matched the correct value of RK/200 within the measurement precision of 1e-4 at magnetic fields between 7 and 9 Tesla. The defective behaviour of other arrays is attributed mainly to non-uniform doping. This result con- firms the acceptable quality of epitaxial graphene, pointing towards the feasibility of well above 90% yield of working Hall bars

    Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001)

    Get PDF
    In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG) layers grown on 4H-SiC (0001) 8° off-axis, by annealing in inert gas ambient (Ar) in a wide temperature range (Tgr from 1600 to 2000°C). For all the considered growth temperatures, few layers of graphene (FLG) conformally covering the 100 to 200-nm wide terraces of the SiC surface have been observed by high-resolution cross-sectional transmission electron microscopy (HR-XTEM). Tapping mode atomic force microscopy (t-AFM) showed the formation of wrinkles with approx. 1 to 2 nm height and 10 to 20 nm width in the FLG film, as a result of the release of the compressive strain, which builds up in FLG during the sample cooling due to the thermal expansion coefficients mismatch between graphene and SiC. While for EG grown on on-axis 4H-SiC an isotropic mesh-like network of wrinkles interconnected into nodes is commonly reported, in the present case of a vicinal SiC surface, wrinkles are preferentially oriented in the direction perpendicular to the step edges of the SiC terraces. For each Tgr, the number of graphene layers was determined on very small sample areas by HR-XTEM and, with high statistics and on several sample positions, by measuring the depth of selectively etched trenches in FLG by t-AFM. Both the density of wrinkles and the number of graphene layers are found to increase almost linearly as a function of the growth temperature in the considered temperature range

    Graphoepitaxy of High-Quality GaN Layers on Graphene/6H–SiC

    Get PDF
    The implementation of graphene layers in gallium nitride (GaN) heterostructure growth can solve self-heating problems in nitride-based high-power electronic and light-emitting optoelectronic devices. In the present study, high-quality GaN layers are grown on patterned graphene layers and 6H–SiC by metalorganic chemical vapor deposition. A periodic pattern of graphene layers is fabricated on 6H–SiC by using polymethyl methacrylate deposition and electron beam lithography, followed by etching using an Ar/O 2 gas atmosphere. Prior to GaN growth, an AlN buffer layer and an Al 0.2 Ga 0.8 N transition layer are deposited. The atomic structures of the interfaces between the 6H–SiC and graphene, as well as between the graphene and AlN, are studied using scanning transmission electron microscopy. Phase separation of the Al 0.2 Ga 0.8 N transition layer into an AlN and GaN superlattice is observed. Above the continuous graphene layers, polycrystalline defective GaN is rapidly overgrown by better quality single-crys- talline GaN from the etched regions. The lateral overgrowth of GaN results in the presence of a low density of dislocations ( ≈ 10 9 cm − 2 ) and inversion domains and the formation of a smooth GaN surface

    Influence of impurity spin dynamics on quantum transport in epitaxial graphene

    Get PDF
    Experimental evidence from both spin-valve and quantum transport measurements points towards unexpectedly fast spin relaxation in graphene. We report magnetotransport studies of epitaxial graphene on SiC in a vector magnetic field showing that spin relaxation, detected using weak-localisation analysis, is suppressed by an in-plane magnetic field, B∥B_{\parallel}, and thereby proving that it is caused at least in part by spinful scatterers. A non-monotonic dependence of effective decoherence rate on B∥B_{\parallel} reveals the intricate role of scatterers' spin dynamics in forming the interference correction to conductivity, an effect that has gone unnoticed in earlier weak localisation studie
    • …
    corecore