70 research outputs found

    Algunas notas sobre la creación y el régimen jurídico de los Jurados de Expropiación Forzosa

    Get PDF
    En el presente trabajo, titulado «Algunas notas sobre la creación y el régimen jurídico de los Jurados de Expropiación Forzosa», se va a realizar un análisis detallado de la regulación jurídico-administrativa y relevancia histórica de los Jurados de Expropiación Forzosa españoles, focalizándonos en los aspectos controvertidos que estos suscitaron y que actualmente todavía suscitan, con el objetivo de conocer en profundidad las razones de su implantación, su trayectoria histórica o las peculiaridades derivadas de las últimas reformas a las que se han sometido.<br /

    Circulatory immune cells in Cushing syndrome: bystanders or active contributors to atherometabolic injury? A study of adhesion and activation of cell surface markers.

    Get PDF
    Glucocorticoids (GC) induce cardiometabolic risk while atherosclerosis is a chronic inflammation involving immunity. GC are immune suppressors, and the adrenocorticotrophic hormone (ACTH) has immune modulator activities. Both may act in atherothrombotic inflammation involving immune cells (IMNC). Aim. To investigate adhesion and activation surface cell markers (CDs) of peripheral IMNC in endogenous Cushing syndrome (CS) and the immune modulator role of ACTH. Material and Methods. 16 ACTH-dependent CS (ACTH-D), 10 ACTH-independent (ACTH-ID) CS, and 16 healthy controls (C) were included. Leukocytes (Leuc), monocytes (MN), lymphocytes (Lym), and neutrophils (N) were analyzed by flow cytometry for atherosclerosis previously associated with CDs. Results. Leuc, N, and MN correlated with CS (p < 0.05), WC (p < 0.001), WHR (p = 0.003), BMI (p < 0.001), and hs-CRP (p < 0.001). CD14++CD16+ (p = 0.047); CD14+CD16++ (p = 0.053) MN; CD15+ (p = 0.027); CD15+CD16+ (p = 0.008) N; and NK-Lym (p = 0.019) were higher in CS. CD14+CD16++ MN were higher in ACTH-ID (8.9 ± 3.5%) versus ACTH-D CS (4.2 ± 1.9%) versus C (4.9 ± 2.3%). NK-Lym correlated with c-LDL (r = 0.433, p = 0.039) and CD15+ N with hs-CRP (r = 0.446, p = 0.037). In multivariate analysis, Leuc, N, and MN depended on BMI (p = 0.021), WC (p = 0.002), and WHR (p = 0.014), while CD15+ and CD15+CD16+ N on hypercortisolism and CS (p = 0.035). Conclusion. In CS, IMNC present changes in activation and adhesion CDs implicated in atherothrombotic inflammation. ACTH-IDCS presents a particular IMNC phenotype, possibly due to the absence of the immune modulator effect of ACTH

    Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas

    Full text link
    Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs

    DDR1 and Its Ligand, Collagen IV, Are Involved in In Vitro Oligodendrocyte Maturation

    Get PDF
    Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs

    DDR1 and Its Ligand, Collagen IV, Are Involved in In Vitro Oligodendrocyte Maturation

    Get PDF
    Discoidin domain receptor 1 (DDR1) is a tyrosine kinase receptor expressed in epithelial cells from different tissues in which collagen binding activates pleiotropic functions. In the brain, DDR1 is mainly expressed in oligodendrocytes (OLs), the function of which is unclear. Whether collagen can activate DDR1 in OLs has not been studied. Here, we assessed the expression of DDR1 during in vitro OL differentiation, including collagen IV incubation, and the capability of collagen IV to induce DDR1 phosphorylation. Experiments were performed using two in vitro models of OL differentiation: OLs derived from adult rat neural stem cells (NSCs) and the HOG16 human oligodendroglial cell line. Immunocytofluorescence, western blotting, and ELISA were performed to analyze these questions. The differentiation of OLs from NSCs was addressed using oligodendrocyte transcription factor 2 (Olig2) and myelin basic protein (MBP). In HOG16 OLs, collagen IV induced DDR1 phosphorylation through slow and sustained kinetics. In NSC-derived OLs, DDR1 was found in a high proportion of differentiating cells (MBP+/Olig2+), but its protein expression was decreased in later stages. The addition of collagen IV did not change the number of DDR1+/MBP+ cells but did accelerate OL branching. Here, we provide the first demonstration that collagen IV mediates the phosphorylation of DDR1 in HOG16 cells and that the in vitro co-expression of DDR1 and MBP is associated with accelerated branching during the differentiation of primary OLs

    Circulatory Immune Cells in Cushing Syndrome: Bystanders or Active Contributors to Atherometabolic Injury? A Study of Adhesion and Activation of Cell Surface Markers

    Get PDF
    Glucocorticoids (GC) induce cardiometabolic risk while atherosclerosis is a chronic inflammation involving immunity. GC are immune suppressors, and the adrenocorticotrophic hormone (ACTH) has immune modulator activities. Both may act in atherothrombotic inflammation involving immune cells (IMNC). Aim. To investigate adhesion and activation surface cell markers (CDs) of peripheral IMNC in endogenous Cushing syndrome (CS) and the immune modulator role of ACTH. Material and Methods. 16 ACTH-dependent CS (ACTH-D), 10 ACTH-independent (ACTH-ID) CS, and 16 healthy controls (C) were included. Leukocytes (Leuc), monocytes (MN), lymphocytes (Lym), and neutrophils (N) were analyzed by flow cytometry for atherosclerosis previously associated with CDs. Results. Leuc, N, and MN correlated with CS (p<0.05), WC (p<0.001), WHR (p=0.003), BMI (p<0.001), and hs-CRP (p<0.001). CD14++CD16+ (p=0.047); CD14+CD16++ (p=0.053) MN; CD15+ (p=0.027); CD15+CD16+ (p=0.008) N; and NK-Lym (p=0.019) were higher in CS. CD14+CD16++ MN were higher in ACTH-ID (8.9 ± 3.5%) versus ACTH-D CS (4.2 ± 1.9%) versus C (4.9 ± 2.3%). NK-Lym correlated with c-LDL (r = 0.433, p=0.039) and CD15+ N with hs-CRP (r = 0.446, p=0.037). In multivariate analysis, Leuc, N, and MN depended on BMI (p=0.021), WC (p=0.002), and WHR (p=0.014), while CD15+ and CD15+CD16+ N on hypercortisolism and CS (p=0.035). Conclusion. In CS, IMNC present changes in activation and adhesion CDs implicated in atherothrombotic inflammation. ACTH-IDCS presents a particular IMNC phenotype, possibly due to the absence of the immune modulator effect of ACTH

    Reduced alfa-MSH underlies hypothalamic ER-stress-induced hepatic gluconeogenesis

    Get PDF
    Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D

    Efficacy of supraspinatus tendon repair using mesenchymal stem cells along with a collagen I scaffold

    Get PDF
    Objectives: Our main objective was to biologically improve rotator cuff healing in an elderly rat model using mesenchymal stem cells (MSCs) in combination with a collagen membrane and compared against other current techniques. Methods: A chronic rotator cuff tear injury model was developed by unilaterally detaching the supraspinatus (SP) tendons of Sprague-Dawley rats. At 1 month postinjury, the tears were repaired using one of the following techniques: (a) classical surgery using sutures (n = 12), (b) type I collagen membranes (n = 15), and (c) type I collagen membranes + 1 × 106 allogeneic MSCs (n = 14). Lesion restoration was evaluated at 1, 2, and 3 months postinjury based on biomechanical criteria. Continuous variables were described using mean and standard deviation (SD). To analyse the effect of the different surgical treatments in the repaired tendons’ biomechanical capabilities (máximum load, stiffness, and deformity), a two-way ANOVA model was used, introducing an interaction between such factor and time (1, 2, and 3 months postinjury). Results: With regard to maximum load, we observed an almost significant interaction between treatment and time (F = 2.62, df = 4, p = 0.053). When we analysed how this biomechanical capability changed with time for each treatment, we observed that repair with OrthADAPT and MSCs was associated with a significant increase in maximum load (p = 0.04) between months 1 and 3. On the other hand, when we compared the different treatments among themselves at different time points, we observed that the repair with OrthADAPT and MSCs has associated with a significant higher maximum load, when compared with the use of suture, but only at 3 months (p = 0.014). With regard to stiffness and deformity, no significant interaction was observed (F = 1.68, df = 4, p = 0.18; F = 0.40, df = 4, p = 0.81; respectively). Conclusions: The implantation of MSCs along with a collagen I scaffold into surgically created tendon defects is safe and effective. MSCs improved the tendon’s maximum load over time, indicating that MSCs could help facilitate the dynamic process of tendon repair
    • …
    corecore