11 research outputs found

    Electrical Characterization Of Isotype N-Zno/N-Gan Heterostructures

    No full text
    Electrical properties of n-ZnO/n-GaN isotype heterostructures obtained by rf-sputtering of ZnO films on GaN layers grown by metal-organic vapour phase epitaxy are discussed. Current-voltage (I-V) characteristics of the n-ZnO/n-GaN diodes revealed highly rectifying behavior with forward and reverse current densities ∼1.42×102 A/cm2 and ∼2.4×10-4 A/cm2, respectively, at ±5 V. From the Arrhenius plot built using temperature dependent current-voltage characteristics (I-V-T) an activation energy 0.125 eV was derived for the reverse bias leakage current path, and 0.618±0.004 eV for the band offset from forward bias measurements. From electron-beam induced current measurements the minority carrier diffusion length in ZnO was estimated in the range 0.125-0.175 μm, depending on excitation conditions. The temperature dependent EBIC measurements yielded an activation energy of 0.462±0.073 V. © 2007 Materials Research Society

    Optimization of K-edge imaging for vulnerable plaques using gold nanoparticles and energy resolved photon counting detectors: a simulation study.

    No full text
    We investigated the effect of different imaging parameters, such as dose, beam energy, energy resolution and the number of energy bins, on the image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. A maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of the plaque's inflammation. The simulation studies used a single-slice parallel beam CT geometry with an x-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33 × 24 cm(2)) phantoms, where both phantoms contained tissue, calcium and gold. In the simulation studies, GNP quantification and background (calcium and tissue) suppression tasks were pursued. The x-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% full width at half maximum (FWHM) energy resolution) implementations of the photon counting detector were simulated. The simulations were performed for the CdZnTe detector with a pixel pitch of 0.5-1 mm, which corresponds to a performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the x-ray beam energy (kVp) to achieve the highest signal-to-noise ratio with respect to the patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at the 125 kVp x-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 µmol mL(-1) (0.21 mg mL(-1)) for an ideal detector and about 2.5 µmol mL(-1) (0.49 mg mL(-1)) for a more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at the lowest patient dose using an energy resolved photon counting detector to image GNP in an atherosclerotic plaque

    Air-Pressure Tunable Depletion Width, Rectification Behavior, and Charge Conduction in Oxide Nanotubes

    No full text
    Metal-oxide nanotubes provide large surface areas and functionalizable surfaces for a variety of optical and electronic applications. Here we report air-tunable rectifying behavior, depletion width modulation, and two-dimensional (2D) charge conduction in hollow titanium-dioxide nanotubes. The metal contact forms a Schottky-diode in the nanotubes, and the rectification factor (on/off ratio) can be varied by more than 3 orders of magnitude (1–2 × 10<sup>3</sup>) as the air pressure is increased from 2 mTorr to atmospheric pressure. This behavior is explained using a change in depletion width of these thin nanotubes by adsorption of water vapor on both surfaces of a hollow nanotube, and the resulting formation of a metal–insulator–semiconductor (MIS) junction, which controls the 2D charge conduction properties in thin oxide nanotubes
    corecore