6,174 research outputs found

    Transport and Magnetic Properties of FexVse2 (x = 0 - 0.33)

    Full text link
    We present our results of the effect of Fe intercalation on the structural, transport and magnetic properties of 1T-VSe2. Intercalation of iron, suppresses the 110K charge density wave (CDW) transition of the 1T-VSe2. For the higher concentration of iron, formation of a new kind of first order transition at 160K takes place, which go on stronger for the 33% Fe intercalation. Thermopower of the FexVSe2 compounds (x = 0 - 0.33), however do not show any anomaly around the transition. The intercalation of Fe does not trigger any magnetism in the weak paramagnetic 1T-VSe2, and Fe is the low spin state of Fe3+.Comment: 7 pages, 8 figures, 2 table

    Supervisory Control for Behavior Composition

    Get PDF
    We relate behavior composition, a synthesis task studied in AI, to supervisory control theory from the discrete event systems field. In particular, we show that realizing (i.e., implementing) a target behavior (e.g., a house surveillance system) by suitably coordinating a collection of available behaviors (e.g., doors, lights, cameras, etc.) amounts to imposing a supervisor onto a special discrete event system. Such a link allows us to leverage on the solid foundations and extensive work on discrete event systems, including borrowing tools and ideas from it

    Vibrational studies of biomolecules. I. 2-Thiouracil

    Get PDF
    IR, far-IR and Raman spectra of 2-thiouracil are reported and interpreted. All the thirty normal modes could be assigned. The Raman spectrum and the vibrational assignments for all the thirty modes are reported for the first time. The ring breathing and Kekule stretching modes for 2-thiouracil are observed to have lower magnitudes when compared to those for uracil which could be due to the mass effect of the sulphur atom in place of the oxygen atom

    Wireless Power Transmission

    Full text link
    Wireless Power Transmission through inductive coupling is one of the new emerging technologies that will bring tremendous change in human life. Due to shortage of time and fast running life style it is difficult to carry the complete charging set which increases the demand of the wirelessly charged products. Wireless power transfer is one of the simplest and inexpensive ways of charging as it eliminate the use of conventional copper cables and current carrying wires. In this paper, a technique is devised for a wireless power transfer through induction, and a feasible design is modeled accordingly. The technique used in this paper is the inductive coupling as it the easiest method of high efficiency power transfer without using wired medium (eg, transformer). In this paper the result of experiment is given which is done to check wireless working of a simple application by glowing LED, and charging a mobile. Wireless power transfer is not much affected by placing hurdles likes books, hands and plastic between transceiver and receiver. This research work focuses on the study of wireless power transfer for the purpose of transferring cut and dried amount of energy at maximum efficiency

    Pattern formation in Passiflora incarnata: An activator-inhibitor model

    Get PDF
    Based on a careful examination of the onset of violet colored dots along the filaments in the developing floral bud stage and the formation of alternating bands of violet and white color in the matured flowers of Passiflora incarnata (Passion flower), it is concluded that the pattern arises from a competition between the production of violet colored anthocyanin and the colorless flavonols along the filaments. The activator-inhibitor model of Gierer and Meinhardt along with the reaction diffusion theory of Turing is used to explain the formation of concentric rings in the flower

    IONS (ANURADHA): Ionization states of low energy cosmic rays

    Get PDF
    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays
    • …
    corecore