
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

P. Felli, N. Yadav and S. Sardina, "Supervisory Control for Behavior Composition," in IEEE Transactions on
Automatic Control, vol. 62, no. 2, pp. 986-991, Feb. 2017.

The final published version is available online at: https://dx.doi.org/10.1109/TAC.2016.2570748

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/TAC.2016.2570748

Supervisory Control for Behavior Composition

Paolo Felli
The University of Melbourne, Australia

paolo.felli@unimelb.edu.au

Nitin Yadav and Sebastian Sardina
RMIT University, Australia

{name.surname}@rmit.edu.au

Abstract

We relate behavior composition, a synthesis task studied in AI, to supervisory control theory from the discrete event systems
field. In particular, we show that realizing (i.e., implementing) a target behavior module (e.g., a house surveillance system) by
suitably coordinating a collection of available behaviors (e.g., automatic blinds, doors, lights, cameras, etc.) amounts to imposing
a supervisor onto a special discrete event system. Such a link allows us to leverage on the solid foundations and extensive work
on discrete event systems, including borrowing tools and ideas from that field. As evidence of that we show how simple it is to
introduce preferences in the mapped framework.

1 Introduction

In this paper, we formally relate two automatic synthesis
tasks, namely, behavior composition, as studied within the AI
community (e.g., [5, 10, 26, 11]) and supervisory control in
discrete event systems [28, 19, 20, 8]. By doing that, we aim
at facilitating the awareness and cross-fertilization between
the two different communities and techniques available.

The composition problem involves automatically “realiz-
ing” (i.e., implementing) a desired, though virtual, target be-
havior module by suitably coordinating the execution of a set
of concrete available behavior modules. From an AI per-
spective, a behavior refers to the abstract operational model
of a device or program, generally represented as a nonde-
terministic transition system. For instance, one may be in-
terested in implementing a house entertainment system by
making use of various devices installed, such as game/music
consoles, TVs, lights, etc.

Supervisory Control, on the other hand, is the task of auto-
matically synthesizing “supervisors” that restrict the behav-
ior of a “plant”, i.e. a discrete event system (DES) which is
assumed to spontaneously generate events, such that a given
specification is fulfilled. DES models a wide spectrum of
physical systems, including manufacturing, traffic, logistics,
and database systems. In Supervisory Control Theory (SCT),
an automaton G—known as “the plant”—is used to model
both controllable and uncontrollable behaviors of a given
DES. The assumption is that the overall behavior of G is not
satisfactory and must be controlled. To that end, a so-called
supervisor V is imposed on G so as to meet a given specifi-
cation on event orderings and legality of states. Supervisors
observe (some of) the events executed by G and can disable
those that are controllable in order to guarantee a given spec-
ification.

Both behavior composition and supervisory control can be
seen as generalized forms of automated planning tasks [25].
Rather than building (linear) plans to bring about an (achieve-
ment) goal, the aim is to keep the system in certain “good”
states. Since we are to build controllers meant to run continu-
ously, solutions generally include “loops.” Moreover, in con-
trast with classical planning, the domains are nondetermin-
istic in nature, which relates to FOND planning and strong-
cyclic notions of plans, as shown in [21].

To build a bridge between the two problems and commu-
nities, this article provides the following technical contribu-
tions:

• A formal, provably correct (Theorems 4 and 5) reduction
of the AI behavior composition problem to the problem of
controlling a regular language on a particular DES plant
(which we call “composition plant”).

• A technique to extract the controller generator—the uni-
versal solution for a composition problem—from a su-
pervisor of the DES composition plant. We show the
technique is correct (Theorem 6), optimal w.r.t. compu-
tational complexity (in the worst case; Theorem 7), and
realizable using existing off-the-shelf SCT tools.

• An approach to DES-based behavior composition ap-
proximation for the special case of deterministic system
(as it is the case, for example, in web-service composi-
tion). This is appealing when no composition solution
exists and one hence looks for “the best” possible con-
troller.

The motivations behind linking behavior composition to
supervisory control theory are threefold. First, supervisory
control theory has rigorous foundations rooted in formal lan-
guages. It was first developed by [20] and others in the

1

ar
X

iv
:1

60
4.

08
76

8v
1

 [
cs

.A
I]

 2
9

A
pr

 2
01

6

80’s and then further strengthened by many other researchers
w.r.t. both theory and application (see, e.g., [8] for a broad
overview of the field). Recasting the composition task as
the supervision of a DES provides us with a solid founda-
tion for studying composition. Second, computational prop-
erties for supervisor synthesis have been substantially stud-
ied and tools for supervisor synthesis are available, including
TCT/STCT [31], GRAIL [22], DESUMA [23], and SUPREM-
ICA [18]. Thus, we can apply very different techniques for
solving the composition problem than those already avail-
able within the AI literature (e.g., PDL satisfiability [10], di-
rect search [26], LTL/ATL synthesis [15, 12], and computa-
tion of special kind of simulation relations [11, 6]). Finally,
once linked, we expect cross-fertilization between AI-style
composition and DES supervisory theory. To that end, for
instance, we demonstrate here how DES-based composition
can directly and naturally handle constraints over a compo-
sition task. Indeed, one may look at importing powerful no-
tions, and corresponding techniques, common in SCT, such
as hierarchical and decentralized supervision, maximal con-
trollability, and tolerance supervision.

2 Preliminaries
In this section, we very briefly review the required back-
ground to understand the rest of the paper.

2.1 The Behavior Composition Problem

The behavior composition problem has been recently much
studied in the web-services and AI literature [4, 6, 11, 26,
15]. The problem amounts to synthesising a controller that
is able to “realize” (i.e., implement) a desired, but nonexis-
tent, target behavior module, by suitably coordinating a set
of available behavior modules. In what follows, we mostly
follow the model detailed in [11].1

Generally speaking, behaviors represent the operational
logic of a device or program, and they are modeled using,
possibly nondeterministic, finite transition systems. Nonde-
terminism is used to express the fact that one may have have
incomplete information about a behavior’s logic.

Example 1. Consider the example depicted in Figure 1. Tar-
get T encapsulates the desired functionality of a mining sys-
tem, which allows to unboundedly extract minerals from
the ground (DIG), move (some transportation vehicle) to
the extraction area (GOMINE) and stock the loose materi-
als to a certain deposit (action sequence LOAD–GODEPOT–
UNLOAD). Finally, routine repairs are performed (REPAIR).
At every step, the user requests an action compatible with this
specification, and a (good) controller should guarantee that it

1For legibility, and without loss of generality, we leave out the so-called
shared environment, used to model action’s preconditions.

can fulfill such request by delegating the action to one of the
three machines actually available in the mine: a dumper truck
(initially at the depot), a loader, and an old excavator (which
are initially at the mine). Note that such machines may be
nondeterministic: the truck can break down while trying to
reach the mining area due to terrain conditions, whereas the
loader might need to perform repairs after unloading. The
excavator (which can not move from the extraction area) is
instead deterministic; however, it is mainly intended for dig-
ging, not for loading. As a result, whenever it performs a
LOAD action, it needs to be repaired before being able to load
again. ◻

Technically, a behavior is a tuple B = ⟨B,A, b0, δ⟩ where:

• B is the finite set of states;

• A is the set of actions;

• b0 ∈ B is the initial state; and

• δ ⊆ B×A×B is B’s (nondeterministic) transition relation:
⟨b, a, b′⟩ ∈ δ denotes that action a executed in behavior
state b may lead the behavior to successor state b′.

We also use alternative notations for the transition relation,
by freely exchanging the notations ⟨b, a, b′⟩ ∈ δ, b

aÐ→ b′ inB,
and b′ ∈ δ(b, a). If, for any state b and action a, there exists
a unique successor state b′ ∈ δ(b, a), then we say that B is
deterministic, in the sense that its successor state is uniquely
determined by the current state and the chosen action, thus
we write b′ = δ(b, a). A trace of B is the possibly infinite
sequence τ = b0

a1Ð→ b1
a2Ð→ ⋯ such that bi+1 ∈ δ(b`, a`+1),

for ` ≥ 0. A history is a finite trace.
An (available) system is a tuple S = ⟨B1, . . . ,Bn⟩, where

each Bi = ⟨Bi,A, b0i, δi⟩ is referred to as an available be-
havior in S (over shared actions A). The joint asynchronous
execution of S is captured by the so-called enacted system
BS = ⟨BS ,A, b⃗0, δS⟩,2 where:

• BS = B1 × . . . × Bn is the set of system states of BS
(given b⃗ = ⟨b1, . . . , bn⟩ ∈ BS , we denote sti(b⃗) = bi for all
i ∈ {1, . . . , n});

• b⃗0 = ⟨b01, . . . , b0n⟩ ∈ BS is the initial state of BS ; and

• ⟨b⃗, a, j, b⃗′⟩ ∈ δS iff stj(b⃗)
aÐ→ stj(b⃗′) in Bj and sti(b) =

sti(b⃗′), for all i ∈ {1, . . . , n} ∖ {j}.

A system history is a straightforward generalization of behav-
ior histories to an available system BS , that is, a sequence of

the form h = b⃗0
a1,j1Ð→ b⃗1

a2,j2Ð→ ⋯ a`,j`Ð→ b⃗`. We denote with
last(h) the last state b⃗` of h and with H the set of all system
histories. Finally, the target behaviour module is just a deter-
ministic behavior T = ⟨T,At, t0, δt⟩. For clarity, we denote

2The term “enacted” is due to the fact that, in the full composition set-
ting, all behaviors are meant to be run within a shared environment (which,
without loss of generality, we left out in this work for simplicity).

2

t0

t1

t2 t3

t4

DIG
GOMINE

L
O

A
D

GODEPOT

UNLOAD

REPAIR

TARGET T
a3 a0 a1

a2

GOMINE

GODEPOT
UNLOAD

GOMINE

REPAIR

TRUCK B1

b1 b0

b2 b3

LOAD
GODEPOT

UNLOAD

UNLOAD

REPAIR G
O

M
IN

E

LOADER B2

c0
c1

DIG

DIG

LOAD

REPAIR

EXCAVATOR B3

Figure 1: A mining system with three available machines.
its states by t instead of b. Hence, a target trace is a, possibly
infinite, sequence τ = t0

a1Ð→ t1
a2Ð→ ⋯, such that ti

ai+1Ð→ ti+1

in T , for all i ≥ 0.
A so-called controller is a function of the form

P ∶H ×At → {1, . . . , n}

that takes a history (i.e., a run) of the system and the next
action request, and outputs the index of the available behav-
ior where the action is to be delegated. The composition task
then amounts to whether there exists (and if so, how to com-
pute it) a controller P such that the target behavior is “real-
ized,” that is, it looks as if the target module is being exe-
cuted.

Roughly speaking, a controller realizes a target module
if it is always able to further extend all the system traces
(by prescribing adequate action delegations), no matter how
the available behaviors happen to evolve (after each step).
To capture this, one first define the set HP,τ of all (P, τ)-
induced system histories, that is, those system histories (i.e.,
histories of enacted system BS) with action requests as per
target trace τ and action delegations as per controller P .3

Definition 1 ([10, 11]). Controller P realizes a target trace
τ , as above, in a system S if for all (P, τ)-induced system
histories h ∈ HP,τ with ∣h∣ < ∣τ ∣, there exists an enacted sys-

tem (successor) state b⃗∣h∣+1 such that last(h)
a∣h∣+1,jhÐ→ b⃗∣h∣+1

is in BS with jh = P (h, a∣h∣+1). A controller P realizes a
target behavior T (in a system S) iff it realizes all the traces
of T . ∎

The existence requirement of a system successor state
b⃗∣h∣+1 implies that delegation P (h, a∣h∣+1) (of action request
a∣h∣+1 in system history h) is legal (i.e., is able to extend the
current history h). Whenever a controller realizes a target
behavior T in a system S, we say that such controller is an

3The set of (P, τ)-induced system historiesHP,τ is defined asHP,τ =
⋃kHkP,τ , where H0

P,τ = {b⃗0} (all behaviors are in their initial state) and
Hk+1P,τ is the set of all possible histories of length k+1 obtained by applying

P to a history inHkP,τ . See [11] for details.

exact compositions of T in S . It is not difficult to see that
there is indeed an exact composition for the example in Fig-
ure 1: all actions requested as per the target logic will always
be fulfilled (i.e., delegated to an available behavior) by the
controller, forever.

As one may expect, checking the existence of an exact
composition is EXPTIME-complete [10], as it resembles
conditional planning under full observability [24]. Interest-
ingly, by revisiting a certain stream of work in service com-
position area, the technique devised in De Giacomo et al. [11]
allows to synthesize a sort of meta-controller, called con-
troller generator (CG) representing all possible composi-
tions. Concretely, a CG is a function

cg ∶ BS ×At → 2{1,...,n}

that, given a system state and a target action a, returns a set
of behavior indexes to which the requested action a may be
legally delegated. A controller generator cg generates a con-
crete controller P iff P (h, a) ∈ cg(last(h), a) for any sys-
tem history h and action a compatible with P and the target
logic, respectively. The CG is unique and finite, and repre-
sents a flexible and robust solution concept to the composi-
tion problem [11].4

We close by noting that De Giacomo et al. [11]’s technique
is directly based on the idea that a composition amounts to
a module that coordinates the concurrent execution of the
available behaviours so as to “mimic” the desired target be-
haviour. This “mimicking” is captured through the formal
notion of simulation [16], suitably adapted to deal with non-
deterministic behaviors. Intuitively, a behavior B1 “simu-
lates” another behavior B2, denoted B2 ⪯ B1, if B1 is able
to always match all of B2’s moves.

Formally, given two behaviors B1 = ⟨B1,A, b01, δ1⟩ and
B2 = ⟨B2,A, b02, δ2⟩, a simulation relation of B1 by B2 is a
relation R ⊆ B1 ×B2 such that ⟨b1, b2⟩ ∈ R implies that for
any action a ∈ A and transition b1

aÐ→ b′1 in B1, there exists
a transition b2

aÐ→ b′2 in B2.
Importantly, De Giacomo et al. [11] defined a so-called

(greatest) ND-simulation relation (ND stands for nondeter-
ministic) between (the states of) the target behavior T and
(the states of) the enacted system BS , denoted ⪯ND.

Definition 2. Consider a target T = ⟨T,At, t0, δt⟩ and the
enacted system BS = ⟨BS ,A, b⃗0, δS⟩. An ND-simulation
relation of T by BS is a relation R ⊆ T × BS such that
⟨t, b⃗⟩ ∈ R implies that for all actions a ∈ A there exists an
index j ∈ {1, . . . , n} such that for all transitions t

aÐ→ t′ in

T (i) there exists a transition b⃗
a,jÐ→ b⃗′ in BS , and (ii) for all

b⃗
a,jÐ→ b⃗′ in BS we have ⟨t′, b⃗′⟩ ∈ R. ∎
4Note that there is a potentially uncountable set of composition con-

trollers. To see this, consider any subset E ⊆ IN of natural numbers and
define controller CE to delegate to behavior B1 if the length n of the cur-
rent history is in E and to B2 otherwise. There is clearly one controller for
each subset of IN, and thus there is an uncountable number of controllers.

3

The following result holds.

Theorem 1 ([6, 11]). There exists a composition controller
of a target behavior T in an available system S if and only if
t0 ⪯ND b⃗0 (where t0 and b⃗0 are T ’s and BS ’s initial states).

In this paper we are indeed interested in synthesising
controller generators, and not just single composition con-
trollers. However, instead of building an ND-simulation rela-
tion, we aim at extracting the controller generator by lever-
aging on existing techniques in Supervisory Control Theory.

2.2 Supervisory Control in Discrete Event
Systems

Discrete event systems range across a wide variety of phys-
ical systems that arise in technology (e.g., manufacturing
and logistic systems, DBMSs, communication protocols and
networks, etc.), whose processes are discrete (in time and
state space), event-driven, and nondeterministic [8]. Gen-
erally speaking, Supervisory Control Theory is concerned
with the controllability of the sequences (or strings/words)
of events that such processes/systems—commonly referred
as the plant—may generate [20].

As standard in formal languages, a language L over a set
Σ is any setL ⊆ Σ∗, and ε ∈ Σ∗ denotes the empty string. The
prefix-closure of a language L, denoted by L, is the language
of all prefixes of words in L, that is, w ∈ L if and only if
w ⋅w′ ∈ L, for somew′ ∈ Σ∗ (w ⋅w′ denotes the concatenation
of words w and w′). A language L is closed if L = L.

In SCT, the plant is viewed as a generator of the lan-
guage of string of events characterizing its processes. For-
mally, a generator is a deterministic finite-state machine
G = ⟨Σ,G, g0, γ,Gm⟩, where Σ is the finite alphabet of
events; G is a finite set of states; g0 ∈ G is the initial state;
γ ∶ G ×Σ → G is the transition function; and Gm ⊆ G is the
set of marked states. We generalize transition function γ to
words as follows: γ ∶ G × Σ∗ → G is such that γ(g, ε) = g
and γ(g,w ⋅ σ) = γ(γ(g,w), σ), with w ∈ Σ∗ and σ ∈ Σ. We
say that a state g ∈ G is reachable if g = γ(g0,w) for some
wordw ∈ Σ∗. Finally, given two wordsw1,w2 ∈ Σ∗, w1 > w2

iff w1 = w2 ⋅w, for some w ≠ ε.
The language generated by generator G is L(G) = {w ∈

Σ∗ ∣ γ(g0,w) is defined}, whereas the marked language of
G is Lm(G) = {w ∈ L(G) ∣ γ(g0,w) ∈ Gm}. Words in
the former language stand for, possibly partial, operations
or tasks, while words in the marked language represent the
completion of some operations or tasks. Note that L(G) is
always closed, but Lm(G) may not be.

Central to generators is the distinction between those
events that are controllable and those that they are not. Tech-
nically, the generator’s alphabet is partitioned into control-
lable (Σc) and uncontrollable (Σu) events, that is, Σ =
Σc ∪ Σu, where Σc ∩ Σu = ∅. All events may occur only
when enabled. Whereas controllable events may be enabled

0 1 2 3

on breakoperate

repairoff
dismantle

Figure 2: A generator modeling a simple machine.

or disabled, uncontrollable events are assumed to be always
enabled.

Example 2. Figure 2 shows a generator G modeling a
generic industrial machine. The machine can be started
(event on), then repeatedly operated (event operate), finally
stopped (event off). All these events are controllable, in that
their occurrence is in the hand of the machine’s user. While
machine is in state 1, the machine may unexpectedly break
down, signaled by the occurrence of event break. The oc-
currence of such event is however outside the control of the
machine’s user—the event is uncontrollable. When the ma-
chine breaks down, it ought to be either repaired or disman-
tled (events repair and dismantle, resp.), both within the con-
trol of the user.

As a generator, G produces words—those in L(G)—
representing the possible runs (i.e., executions) of the ma-
chine being modelled. In particular, the machine’s marked
language Lm(G) is equivalent to the regular expression
(on ⋅ (operate ∣ (break ⋅ repair))∗ ⋅ off)∗ that corresponds
to those sequences of events that leave the machine in state
0. Words in Lm(G) are said to be “marked,” in that they are
judged “complete,” and therefore “good” (in the eye of the
machine’s designer). ◻

As expected, the overarching idea in SCT is to check
whether one is able to guarantee certain specified (good) be-
havior of the device being modeled by a generator, and if so,
how. A specification for a generator plant G is a language
K ⊆ L(G). We are now prepared to formally introduce the
key notion of controllability in SCT.

Definition 3. A specification K is controllable in generator-
plant G if and only if K ⋅Σu ∩L(G) ⊆K. ∎

That is, every prefix of K immediately followed by a legal
uncontrollable event (i.e., one compatible with G) can be ex-
tended to a word in the specification itself. Intuitively, K is
controllable if it is not possible to be “pushed” outside of it,
regardless of potential uncontrollable events.

Example 3. Consider the specification K1 = L((on ⋅
operate∗ ⋅ off)∗) requiring that the machine from Example 2
will always function without break downs. Clearly, such
specification is not controllable: there exists an uncontrol-
lable event (break) that can violate it. In fact, any word
w′ = w ⋅ on in L(G) (therefore any such w′ ∈ K1) can be
extended with the uncontrollable event break ∈ Σu, result-
ing in word w′ ⋅ break not meeting the specification, that is,
w′ ⋅ break /∈K1.

4

Consider alternative specification K2 = L((on ∣ off ∣
operate ∣ break ∣ repair)∗), which prohibits that the machine
be dismantled. Such specification is indeed controllable: ev-
ery time the machine breaks down, one needs to repair it.
Note how a very concrete process specification is embedded
in K1, whereas K2 is more abstract, in that it does not de-
scribe a process but rather compactly captures a set of (good)
processes. ◻

The next step is to define what it means for a generator
to be “supervised” in order to achieve certain behavior. The
idea is that one—the supervisor—can disable certain control-
lable events to achieve a desired behavior. Technically, a su-
pervisor for a plant G is a function of the form

V ∶ L(G)→ {Σe ∣ Σe ∈ 2Σ, Σu ⊆ Σe}

that outputs, for each word in L(G), the set of events that
are enabled (i.e., allowed) next. Notice that uncontrollable
events are always enabled. A plant G under supervisor
V yields the controlled system V /G whose generated and
marked languages are defined as follows:

L(V /G) = {w ⋅ σ ∈ L(G) ∣ w ∈ L(V /G), σ ∈ V (w)} ∪ {ε};

Lm(V /G) = L(V /G) ∩Lm(G).

Informally, L(V /G) represents all processes that plant G
may yield while supervised by V , whereas Lm(V /G) stands
for the subset that are, in some sense, “complete”.

A key result in SCT states that being able to control a
(closed) specification in a plant amounts to finding a super-
visor for such specification.

Theorem 2 ([27]). Let G be a generator and K ⊆ L(G) be
a closed and non-empty specification. There exists a super-
visor V such that L(V /G) =K iff K is controllable in G.

In many settings, one would further aim to control the lan-
guage representing complete processes, that is, the marked
fragment of the plant. In such cases, one shall focus on
supervisors that can always drive the plant’s execution to-
wards the generation of words in the marked (supervised)
language. Technically, supervisor V is nonblocking in plant
G if L(V /G) = Lm(V /G). This means that the strings in the
supervised language L(V /G) are prefixes of marked super-
vised language Lm(V /G), and therefore they can always be
potentially extended into a complete marked string.

Example 4. Consider a specification K3 for the generator
in Figure 2 stating that one should dismantle the machine
when it breaks after exactly n number of repairs. Concretely,
w ∈ K3 iff either w does not mention dismantle and men-
tions repair less than n times, or w = w′ ⋅ break ⋅ dismantle
and w′ mentions repair exactly n times but does not mention
dismantle.

Specification K3 ∩ L(G) is controllable, as there exists a
supervisor V that disables event dismantle in any run/word
containing less than n break-down events, and then enables
it while disabling event repair. In particular, L(V /G) =K3∩
L(G) (see some words in K3 may never arise in the plant G).

Notice, however, that such supervisor V is not nonblock-
ing: any string ending with the event dismantle can not be
extended to a marked string. If, instead, state 3 were marked
(or, say, the machine featured a controllable event reassemble
from state 3 to state 2), then the same supervisor would be
nonblocking, with Lm(V /G) =K3 ∩L(G). ◻

Now, when a specification K is not (guaranteed to be)
controllable, one then looks for controlling the “largest” (in
terms of set inclusion) possible sublanguage of K. Inter-
estingly, such sublanguage, called the supremal controllable
sublanguage of K and denoted supC(K), does exist and is
in fact unique [28].

Putting it all together, in SCT, we are generally inter-
ested in (controlling) the K’s sublanguage K↑ = supC(K ∩
Lm(G)), that is, the supremal marked specification. It turns
out that, under a plausible assumption, a supervisor does ex-
ist for non-empty K↑.

Theorem 3 ([27]). If K ∩ Lm(G) ⊆ K and K↑ /= ∅, there
exists a nonblocking supervisor V for G s.t. Lm(V /G) =K↑.

The assumption that K ∩ Lm(G) ⊆ K states that initial
specificationK is closed under marked-prefixes: every prefix
from K representing a complete process is part of K. Theo-
rem 3 will play a key role in our results.

Example 5. Consider again K1 = L((on ⋅ operate∗ ⋅ off)∗)
from Example 3. Its supremal marked specification is K1↑ =
{ε}, that is, the sole empty string. This is because as soon
as the event on is enabled and the machine moves to 1, the
uncontrollable event break may occur, thus violating K1.
Therefore, any word leading to state 1 can not be in K1↑. ◻

3 DES-based Behavior Composition
In this section we show how to relate the notion of a composi-
tion controller in behavior composition to that of an adequate
supervisor in discrete event system. After all, their opera-
tional requirements are similar, namely, to take decisions in
a step-by-step fashion in order to keep the system evolutions
in a restricted set of “good” traces. Their differences can be
summarized as follows:

Composition Controller Supervisor
given a system history h
and a target action a, it out-
puts one delegation P (h, a)

given a plant’s string prefix
w, it outputs enabled events
V (w)

such that it is possible to
proceed forever

such that we can always
‘reach’ marked states

5

Hence, the idea is to mimic j = P (h, a) by means of
j ∈ V (h ⋅a), with a ∈ V (h). However, there are fundamental
differences between the two formalisms that do not allow for
a direct, straightforward, translation. As a matter of fact, a
naive translation that defines the plant as the cross-product of
all available behaviors and the target’s language as specifica-
tion will simply not work, due to several mismatches between
DES and behavior composition (see Section 5 for details). In
particular, it is well known that, for nondeterministic systems
(as is the case with the available system), the notion of lan-
guage inclusion is weaker than that of simulation.

From now on, let S = ⟨B1, . . . ,Bn⟩ be an available sys-
tem, where Bi = ⟨Bi,A, b0i, δi⟩ for i ∈ {1, . . . , n}, and
T = ⟨T,At, t0, δt⟩ a target behavior (without loss of gen-
erality we assume T to be connected and all Bi’s and T to
be mutually disjoint sets). The general approach is to build
an adequate plant from S and T , and define a specification
language K, such that controlling K (as per Definition 3)
amounts to composing T in S.

So, let us next build a generator G⟨S,T ⟩—the plant to be
controlled—from target T and system S. The controllable
aspect of the plant amounts to behavior delegations: at any
point in time, a supervisor can enable or disable an available
behavior to execute. On the other hand, the supervisor can
control neither the action requests nor the evolution of the
behavior selected—they are uncontrollable events. A state in
the plant encodes a snapshot of the whole composition pro-
cess, namely, the state of all behaviors (including the target)
together with the current pending target request and current
behavior delegation. Only those with no pending request or
delegation are considered “marked.” Below, we use two aux-
iliary sets Indx = {1, . . . , n} and Succ = ⋃i∈{1,...,n}Bi.

Definition 4. Let the composition plant G⟨S,T ⟩ =
⟨Σ,G, g0, γ,Gm⟩ be defined as follows:

• Σ = Σc∪Σu, where Σc = Indx and Σu = At∪Succ, is the
finite set of controllable (behaviors’ indexes) and uncon-
trollable events (target’s actions and behaviors’ states).

• G = T × B1 × . . . × Bn × (At ∪ {e}) × (Indx ∪ {0}) is
the finite set of states of the plant. Additional symbol
e denotes no active request, whereas index 0 denotes no
active delegation.

• g0 = ⟨t0, b01, . . . , b0n, e,0⟩ is the initial state of the plant,
encoding the initial configuration of the system and tar-
get, and the fact that there has been no request event or
delegation.

• γ ∶ G ×Σ→ G of G⟨S,T ⟩ is the plant’s transition function
where γ(⟨t, b1, . . . , bn, req, idx⟩, σ) is equal to:

– ⟨δt(t, σ), b1, . . . , bn, σ,0⟩ if req = e, idx = 0, σ ∈ At;
– ⟨t, b1, . . . , bn, req, σ⟩ if req ∈ At, idx = 0, σ ∈ Indx;

– ⟨t, b1, . . . , b′idx, . . . , bn, e,0⟩ if σ∈δidx(bidx, req), b′idx =
σ.

• Gm = T ×B1 × . . . ×Bn × {e} × {0} (marked states). ∎

By inspecting the plant transition function γ we can see
that the whole process for one target request involves three
transitions in the plant, namely, target action request, behav-
ior delegation, and lastly available system evolution. Ini-
tially, and after each target request has been fulfilled, the
plant is in a state with no active request (e) and no behav-
ior delegation (0), ready to accept and process a new target
request—a marked state. Then:

1. given a legal target request (uncontrollable event) σ ∈ At,
the plant evolves to a state recording the request and the
corresponding target evolution (case 1 of γ);

2. after that, the plant may evolve relative due to (control-
lable) delegation events (one per available behavior), to
states recording such delegations as well as the current
pending action (case 2 of γ); and finally

3. the plant may evolve, in an uncontrollable manner, to
states reflecting all possible evolutions of the behavior se-
lected, together with no active request or delegation (case
3 of γ).

Observe that a composition plant G⟨S,T ⟩, being a gener-
ator, is deterministic, whereas the available behaviors being
modelled may include nondeterministic evolutions. The fact
is that such nondeterminism is encoded via uncontrollable
events.

g0 g1

g2
g3

g4

g5

g6
g7

g8

g9

g10

g11

g12

g13

g14

g15

g16

g17

g24

g25

g26

g27

g18

g19 g20

g21

g22

g23

g28

g29g30

g31

⋯
⋯
⋯ ⋯

DIG

1
2

3

c
0

GOMINE

3
2

1

a3

a1

LOAD

1

2

3

c1

b0

GODEPOT

1

3
2

b1

LOAD

1

2
3

c0

b0

GODEPOT

2

b1

UNLOAD

G
OD

EPOT

GODEPOT
UNLOAD 1

,
2
,
3

Figure 3: Plant G⟨S,T ⟩ for the example in Figure 1 (partial).
Double circled states are marked, so any word prefix end-
ing in one of these states is marked. Dashed transitions cor-
respond to uncontrollable events, solid ones to controllable
events (delegations). State components are listed in the ta-
ble.

6

g0 ⟨t0, a0, b0, c0⟩ e 0 g8 ⟨t1, a0, b0, c0⟩ GOMINE 1 g16 ⟨t2, a3, b0, c1⟩ e 0 g24 ⟨t3, a1, b0, c0⟩ GODEPOT 3
g1 ⟨t0, a0, b0, c0⟩ DIG 0 g9 ⟨t1, a3, b0, c0⟩ e 0 g17 ⟨t3, a3, b0, c0⟩ GODEPOT 0 g25 ⟨t3, a3, b0, c0⟩ GODEPOT 1
g2 ⟨t0, a0, b0, c0⟩ DIG 1 g10 ⟨t1, a1, b0, c0⟩ e 0 g18 ⟨t2, a1, b0, c0⟩ LOAD 0 g26 ⟨t3, a3, b0, c0⟩ GODEPOT 2
g3 ⟨t0, a0, b0, c0⟩ DIG 2 g11 ⟨t2, a3, b0, c0⟩ LOAD 0 g19 ⟨t2, a1, b0, c0⟩ LOAD 1 g27 ⟨t3, a1, b1, c0⟩ e 0
g4 ⟨t0, a0, b0, c0⟩ DIG 3 g12 ⟨t2, a3, b0, c0⟩ LOAD 1 g20 ⟨t2, a1, b0, c0⟩ LOAD 2 g28 ⟨t3, a3, b0, c1⟩ GODEPOT 0
g5 ⟨t1, a0, b0, c0⟩ GOMINE 0 g13 ⟨t2, a3, b0, c0⟩ LOAD 2 g21 ⟨t2, a1, b0, c0⟩ LOAD 3 g29 ⟨t3, a3, b0, c1⟩ GODEPOT 2
g6 ⟨t1, a0, b0, c0⟩ GOMINE 3 g14 ⟨t2, a3, b0, c0⟩ LOAD 3 g22 ⟨t2, a1, b0, c0⟩ e 0 g30 ⟨t3, a3, b0, c1⟩ e 0
g7 ⟨t1, a0, b0, c0⟩ GOMINE 2 g15 ⟨t2, a3, b0, c1⟩ e 0 g23 ⟨t2, a1, b0, c0⟩ e 0 g31 ⟨t4, a3, b1, c0⟩ UNLOAD 0

Hence, the final step in an action request delegation pro-
cess may yield multiple plant states, one per nondeterminis-
tic evolution of the selected behavior. Also, such resulting
states are to be considered “marked,” in that a complete del-
egation process has been completed. If, however, the chosen
behavior is unable to legally execute the active request from
its current state, then no transition is defined and the plant
(non-marked) state is a dead-end.

Example 6. Figure 3 depicts the (partial) plant for the com-
position problem of Figure 1. Each complete delegation pro-
cess of action requests corresponds, in the plant, to three con-
secutive events in (At ⋅ Indx ⋅ Succ).

After each uncontrollable event representing a target re-
quest, three delegations—to available behaviors B1,B2 and
B3—are always possible. For instance, the nodes in the
greyed area represent the complete delegation of the digging
action from the initial plant (and composition) state g0. The
event DIG represents the action request; that is uncontrol-
lable, and hence always enabled. The resulting state g1 reg-
isters such request. Then, three distinct controllable events
embody the three possible delegations, one per available be-
havior. However, only behavior B3 can legally perform ac-
tion DIG from its initial state (see Figure 1) to successor state
c0. Hence, a further uncontrollable event (c0 itself) is used
to model the looping transition evolution of B3. In general,
there could be multiple uncontrollable evolutions if the del-
egated behavior behaves nondeterministically; see for exam-
ple, plant state g8 where behaviour B1 may evolve in two
ways.

Of course, delegations reaching dead-end states are not de-
sirable (e.g., delegation 1 in g18). However, not reaching an
immediate dead-end is not enough to capture the composi-
tion requirements. Indeed, whereas delegation to B2 and B3

will avoid immediate dead-ends in g18, only the latter will be
part of a composition solution (see later Figure 4, state 2). ◻

With the plant built, the question is what language one
would like to control. The answer is simple: we aim to con-
trol exactly the marked language of the composition plant,
that is,

K⟨S,T ⟩ = Lm(G⟨S,T ⟩).
In other words, we seek for ways of always controlling the
plant so as to eventually be able to reach the end of every
request-delegation process. Observe that, contrary to intu-
ition, the target behavior T is not used to derive the language

specification, except in that it is embedded into the plant it-
self. This is not surprising, as the the target is one of the
components generating uncontrollable events (the other be-
ing the evolution of available behaviors).

We shall claim that the ability to control K⟨S,T ⟩ in plant
G⟨S,T ⟩ amounts to the ability to compose T in system S . To
that end, we first show an important technical result stating
that set of (P, τ)-induced system histories HP,τ is in bijec-
tion with the set of traces in K⟨S,T ⟩↑ when P is a composi-
tion controller and τ a trace of T . This appears evident when
carefully inspecting Figure 3, and is formalized in the follow-
ing lemma. We use mapping word(h) ∈ (At ⋅ Indx ⋅Succ)∣h∣
to translate a system history (i.e., a finite trace of the en-
acted system BS) into words generated by composition plant
G⟨S,T ⟩.

Lemma 1. Controller P is a composition for target T in sys-
tem S iff for each target trace τ and system history h ∈HP,τ
we have that word(h) ∈K⟨S,T ⟩↑, where:

word(b⃗0
a1,j1Ð→ b⃗1

a2,j2Ð→ . . .
a`,j`Ð→ b⃗`) =

(a1 ⋅ j1 ⋅ stj1(b⃗1)) ⋅ . . . ⋅ (a` ⋅ j` ⋅ stj`(b⃗`)).

Functions sti ∶ G→ Bi
5 , with i ∈ Indx, project the state of i-

th behavior in a plant state, that is, sti(⟨t, b⃗, a, j⟩) = sti(b⃗) =
bi. Analogously, for the target, stt(⟨t, b⃗, a, j⟩) = t.

Proof. (⇒) Assume by contradiction that there exists a com-
position P such that for some target trace τ and induced his-

tory h
a,jÐ→ b⃗, we have P (h, a) = j but word(h) ⋅ a ⋅ j ⋅ b′ /∈

K⟨S,T ⟩↑, with b′ = stj(b⃗). This implies that word(h) ⋅a ⋅j ⋅b′
is not allowed from the initial state g0 of the plant, according
to supervisor V such that Lm(V /G) =K↑, i.e., either

(1) word(h) ⋅ a /∈ L(G⟨S,T ⟩) or

(2) word(h) ⋅ a ⋅ j /∈ L(G⟨S,T ⟩) or

(3) word(h) ⋅ a ⋅ j ⋅ b′ /∈ L(G⟨S,T ⟩) or

(4) for all words w ∈ Lm(G⟨S,T ⟩) with w > word(h) ⋅a ⋅j ⋅b′
we have w /∈K⟨S,T ⟩↑.

Case (1) is not possible by construction of G⟨S,T ⟩. In-
deed, according to γ, it is w ⋅ a ∈ L(G⟨S,T ⟩) for every

5We extend the function sti to map a plant state to corresponding behav-
ior state.

7

w ∈ Lm(G⟨S,T ⟩) such that δt(stt(γ(g0,w)), a) is defined in
T . Case (3) implies, by definition of γ, that b′j /∈ δj(bj , a),
with bj = stj(γ(g0,w)). Hence, the action a can not be repli-
cated by behavior Bj and, as a consequence, the plant’s state
reached with a is a dead-end. This contradicts the fact that P
is a composition for T in S. Indeed, let g = γ(g0,w); note
that this also implies that stt(g) /⪯ND ⟨st1(g), . . . , stn(g)⟩,
namely that the simulation is violated, as action a can not be
replicated in the enacted system state ⟨st1(g), . . . , stn(g)⟩.
By following the same argument, we can also exclude case
(2). Finally, case (4) implies that for any such word w we
have w ⋅ Σu ∩ L(G⟨S,T ⟩) /⊆ K⟨S,T ⟩↑, i.e., there exists a se-
quence of (uncontrollable) events leading to a state which is
not coreachable, i.e., from where a marked state is not reach-
able. Indeed, remember that K⟨S,T ⟩ = Lm(G⟨S,T ⟩). Hence,
since every action a ∈ At ⊂ Σu is always allowed by any
supervisor and, by construction of G⟨S,T ⟩, w ⋅ a ∈ L(G⟨S,T ⟩)
for every w ∈ Lm(G⟨S,T ⟩), we can apply the same reason-
ing of (3) and deduce that P is not a composition. That is,
there exists a target trace τ ′ = τ aÐ→ t`, with h ∈ HP,τ and
w = word(h), not realized by P .

(⇐) First of all, since K⟨S,T ⟩ ∩ L(G⟨S,T ⟩) ⊆ K⟨S,T ⟩ and
by the previous assumption K⟨S,T ⟩↑ ≠ ∅, then by Theorem 3
a supervisor V does exist. Hence, word(h)⋅a⋅j ⋅b′ ∈K⟨S,T ⟩↑
iff there exists a supervisor V such that Lm(V /G⟨S,T ⟩) =
K⟨S,T ⟩↑, a ∈ V (word(h)), j ∈ V (word(h) ⋅ a) and b′ ∈
V (word(h) ⋅ a ⋅ j). Then, remember that At ⊂ Σu and
hence all target action are always allowed by V . Similarly,
the event set Succ is uncontrollable as well. Assume by con-
tradiction that word(h) ⋅ a ⋅ j ⋅ b′ ∈ K⟨S,T ⟩↑ but it does not
exist any composition P such that P (h, a) = j. By definition
of composition, this implies that there exists a target trace
τ = t0

a1Ð→ ⋯tk with a = a∣τ ∣ such that for some history h ∈
HP,τ we have that δS(last(h), a, j) is not defined in the sys-
tem behavior BS built out of B1, . . . ,Bn. This means that ei-
ther δt(stt(last(h)), a) is not defined or behavior Bj can not
perform this action from its current state stj(last(h)), i.e.,
b′ ≠ δj(stj(last(h)), a). Again, observe how this also im-
plies that stt(last(h)) /⪯ ⟨st1(last(h)), . . . , stn(last(h))⟩.
In other words, according to γ, word(h) ⋅a ⋅j ⋅b′ /∈ L(G⟨S,T ⟩)
. If this is the case, then either a /∈ V (word(h)) or j /∈
V (word(h) ⋅ a) or b′ /∈ V (word(h) ⋅ a ⋅ j) and we get a
contradiction. ◻

The above lemma is the key to prove our main results of
this section, namely, that supervisors able to control the spec-
ification K⟨S,T ⟩ in plant G⟨S,T ⟩ correspond one-to-one with
composition (solution) controllers for building target T in
available system S. To express such results, we first need to
relate supervisors and controllers.

Definition 5. Let V be a supervisor for composition plant
G⟨S,T ⟩. A controller PV ∶ H × A → {1, . . . , n} is induced
by V iff PV (h,σ) ∈ V (word(h) ⋅ σ), for every h ∈ H and
σ ∈ A. ∎

In other words, a PV is induced by a supervisor V iff its
delegations fall into the set of “delegation events” allowed by
V . Clearly, a supervisor can induce many controllers.

The main result of this section states that the supremal of
the specification is controllable by some supervisor iff a solu-
tion to the composition problem exists. Moreover, every such
supervisor induces controllers that are in fact compositions.

Theorem 4 (Soundness). There exists a nonblocking super-
visor V such that Lm(V /G⟨S,T ⟩) = K⟨S,T ⟩↑ ≠ ∅ iff there
exists a composition P for T in S . In particular, every con-
troller PV induced by V is a composition for T in S.

Proof. (⇒) Assume by contradiction that for some con-
troller PV there exists a target trace τ = t0

a1Ð→ ⋯ a`Ð→ t`
and an induced system history h ∈ HPV ,τ such that ei-
ther (1) PV (h, a`) is not defined or (2) PV (h, a`) = j but
δj(stj(last(h)), a`) is not defined. By Lemma 1, it means
that word(h) ⋅ a` ⋅ j /∈ K⟨S,T ⟩↑. More precisely, (1) im-
plies that word(h) ⋅a` /∈ L(G⟨S,T ⟩) whereas (2) implies that
a` /∈ V (word(h)) and j /∈ V (word(h) ⋅ a`). Hence, either
K⟨S,T ⟩↑ = ∅, or PV does not realize the target trace τ and we
contradict Lemma 1.

(⇐) By Lemma 1, if such P exists then K⟨S,T ⟩↑ ≠ ∅. ◻
Furthermore, (nonblocking) supervisors are “complete” in
that they embed every possible composition controller.

Theorem 5 (Completeness). Given a nonblocking supervi-
sor V such that Lm(V /G⟨S,T ⟩) = K⟨S,T ⟩↑, every composi-
tion P for T in S is induced by V .

Proof. Assume by contradiction that there exists a compo-
sition P ′ which can not be induced by V , that is, it is such
that P ′(h, a`) /∈ V (word(h) ⋅ a`) for some target trace τ =
t0

a1Ð→ ⋯ a`Ð→ t` and some induced system history h ∈HP ′,τ .
More precisely, for some j ∈ Indx, word(h) ⋅a` ⋅ j /∈K⟨S,T ⟩↑
but j ∈ P ′(h, a`). It is easy to see that, by Lemma 1, P ′ can
not be a composition. ◻

Let us call supervisors of this sort composition supervi-
sors. These two results demonstrate the formal link between
the two synthesis tasks, namely, synthesis of a composition
controller and supervisor synthesis.

Recalling that K⟨S,T ⟩ = Lm(G⟨S,T ⟩) and the definition of
compositions, and as already hinted in the proof of Lemma 1,
we can also explicitly relate the notions of maximal control-
lable sublanguage and ND-simulation.

Corollary 1. Given a plant G⟨S,T ⟩ for S and T as above, if
K⟨S,T ⟩↑ ≠ ∅ then for any word w ∈ K⟨S,T ⟩↑, we have that
stt(g) ⪯ND ⟨st1(g), . . . , stn(g)⟩ where g = γ(g0,w).

Proof. We proceed by induction on the length of w. The
claim holds for g = g0 (by Theorem 4 and Thorem 1). As-
sume now it holds for w′, with g′ = γ(g0,w

′), and con-
sider any word w = w′ ⋅ a ⋅ j ⋅ bj for some action a, del-
egation j and behavior state bj . Since a ∈ Σu, and be-
cause K⟨S,T ⟩↑ is controllable, from Definition 3 it follows

8

that w ∈ K⟨S,T ⟩↑ implies w ⋅ a ∈ K⟨S,T ⟩↑, and for the same
reason alsow⋅a⋅j ⋅bj ∈K⟨S,T ⟩↑ for some j ∈ Indx and bj ∈ Bj .
Which means that for any action a such that stt(g′)

aÐ→ t
for some target state t, there exists an index j such that

⟨st1(g), . . . , stn(g)⟩
a,jÐ→ b⃗′ in BS , with stj(b⃗) = bj . ◻

It remains to be seen, though, how to actually extract finite
representations of composition controllers from DES compo-
sition supervisors.

3.1 From Supervisors to Controller Genera-
tors

As discussed at the end of Section 2.1, a controller generator
(CG) is a finite structure encoding all possible composition
solutions—a sort of a universal solution—-that, once com-
puted, can be used at runtime to produce all possible target
realizations. Because of that, CGs have been shown to enjoy
run-time flexibility and robustness properties, in that the ex-
ecutor can leverage on them to recover or adapt to behavior
various types of execution failures (e.g., an available behav-
ior breaking down completely) [11]. Next, we show that it is
possible to to extract the CG from composition supervisors.

We start by noting that, since both languages L(G⟨S,T ⟩)
andK⟨S,T ⟩ are regular, they are implementable. In fact Won-
ham and Ramadge [28] have shown that it is possible to com-
pute a generator R that represents exactly the behavior of
controlled system V /G⟨S,T ⟩, for some supervisor V able to
control K⟨S,T ⟩↑. Such generator R will capture not only the
control actions of supervisor V , but also all internal (uncon-
trollable) events of the plant. In a nutshell, extracting the
controller generator amounts to projecting out the latter and
transforming controllable events into behavior delegations.
The whole procedure can be depicted as:

⟨S,T ⟩ G⟨S,T ⟩ K⟨S,T ⟩↑ R cgDES
induces control represented

by

extraction

From a composition problem, a corresponding plant is first
built. If the composition is solvable, the language K⟨S,T ⟩↑ /=
∅ is controllable (Theorems 4 and 5). In addition, we know
that there exists a generator R representing a composition
supervisor.

Given a state y of R, we denote with [y] the tuple
⟨stt(y), st1(y), . . . , stn(y)⟩ extracting the full composition
state from R’s state y, where function sti(y) projects the lo-
cal state of target and that of the available behaviors (this can
be deterministically reconstructed from the event labels inR
in linear time on the size ofR).

Definition 6. Let R = ⟨Σ, Y, y0, ρ, Ym⟩ be the generator
representing a supervisor. The DES controller generator
is a finite-state structure cgDES = ⟨At, Indx,Q, [y0], ϑ, ω⟩,
where:

• At and Indx are the set of target actions and behavior in-
dexes, as before;

0 1 3

11

10

829

7

4

15

19

5

6

21

13

18

1214

16

20 17

to18

DIG,3
GOMINE,1 LOAD,2

LOAD,3

GODEPOT,2

UNLOAD,2
UNLOAD,2

REPAIR,2

GOMINE,2

DIG,3

LOAD,2

REPAIR,1

L
O

A
D
,3

GODEPOT,2

UNLOAD,2

UNLOAD,2

REPAIR,2GOMINE,2

DIG,3

LOAD,2

GODEPOT,2

GOMINE,1

G
O

M
IN

E,
1

DIG,3

LO
A

D
,2

G
O

D
E

P
O

T
,
1

U
N

L
O

A
D
,
1

GOMINE,1

LOAD,3

G
O

D
E

PO
T
,1

REPAIR,3

REPAIR,
1

Figure 4: cgDES for the example in Figure 1

• Q = {[y] ∣ y ∈ Y, y = ρ(y0, p), p ∈ (At ⋅ Indx ⋅ Succ)∗}
is the set of full composition states reachable from initial
generator’s state y0; 6

• [y0] is the initial state of cgDES;

• ϑ ∶ Q ×At × Indx ×Q is the transition relation such that
[y′] ∈ ϑ([y], σ, j) iff y′ = ρ(y, σ ⋅ j ⋅ b′j) for some b′j ∈
Succ. That is, ϑ outputs a transition corresponding to the
delegation of action σ to the j-th module iff there exists a
transition, labeled with σ, from its current state (namely,
iff there exists a σ-successor b′j); and

• ω ∶ Q×At → 2Indx is the behavior selection function, such
that ω(q, σ) = {j ∣ ∃q′ ∈ ϑ(q, σ, j)}, which just “reads”
the function ϑ. ∎

A controller generator cg for a composition problem
is able to generate controllers P such that P (h,σ) ∈
cg(last(h), σ), where h is a system history and σ is a tar-
get action request (cf. Section 2.1). Similarly, we say here
that a DES controller generator cgDES generates controllers
P such that P (h,σ) ∈ ω(last(h), σ).

Example 7. Figure 4 represents the complete DES CG for
the plant in Figure 3. For instance, if the user requests ac-
tion LOAD from state 1 (namely, ⟨t1, a3, b0, c0⟩), the con-
troller generator allows both behaviors B2 and B3 to be
scheduled, i.e., ω(⟨t1, a3, b0, c0⟩,GOMINE) = {2,3}. There-
fore, any controller P generated by cgDES will be such that
P (h, LOAD) ∈ {2,3}, where h is any system history such
that last(h) = ⟨t1, a3, b0, c0⟩.

Note how sequences of transition in the plant (an action
request, a delegation and a behaviour evolution) are com-
pressed in cgDES into a single transition. For instance, the se-
quence g0

DIGÐ→ g1
3Ð→ g4

c0Ð→ g0 is combined into the cgDES’s

6Recall that Succ is the set of all behaviors states as defined on page 6.

9

0 ⟨t0, a0, b0, c0⟩ 4 ⟨t1, a3, b0, c0⟩ 8 ⟨t4, a3, b0, c0⟩ 12 ⟨t4, a3, b2, c1⟩ 16 ⟨t1, a1, b0, c1⟩ 20 ⟨t2, a1, b0, c1⟩
1 ⟨t1, a3, b0, c0⟩ 5 ⟨t2, a1, b0, c1⟩ 9 ⟨t4, a0, b0, c1⟩ 13 ⟨t0, a0, b0, c1⟩ 17 ⟨t1, a3, b0, c1⟩ 21 ⟨t2, a1, b0, c1⟩
2 ⟨t1, a1, b0, c0⟩ 6 ⟨t3, a2, b0, c1⟩ 10 ⟨t4, a3, b2, c0⟩ 14 ⟨t0, a3, b3, c1⟩ 18 ⟨t2, a3, b0, c1⟩
3 ⟨t2, a3, b0, c0⟩ 7 ⟨t0, a3, b3, c0⟩ 11 ⟨t3, a3, b1, c0⟩ 15 ⟨t3, a3, b1, c1⟩ 19 ⟨t2, a3, b0, c1⟩

transition from state 0 which is labelled ⟨DIG,3⟩, such that
ω(0,DIG) = {3}. ◻

The following result demonstrates the correctness of our
DES-based approach to compute controller generators.

Theorem 6. A controller P is a composition of T in S iff it
is generated by DES CG cgDES.

Proof. (⇒) Assume that there exists a composition P that
can not be generated by cgDES. It means that for some target
trace τ and induced history h ∈ HP,τ it is P (h,σ) = j /∈
cgDES(last(h), σ) for some σ. By construction of cgDES, this
means that there is no p = (σ ⋅ j ⋅ b′j) ∈ (Σt ⋅ Indx ⋅ Succ)
such that ρ(last(h), p) is defined in R. By definition of R,
it contradicts Theorem 5. (⇐) Assume that there exists a
controller P generated by cgDES which is not a composition.
Similarly, this contradicts Theorem 4. ◻

Note how, from Corollary 2 and the definition of cgDES,
we get that ⟨t, b1, . . . , bn⟩ ∈ Q iff t ⪯ND ⟨b1, . . . , bn⟩, which
matches the definition of controller generator in [11].

Also, the DES-based approach is optimal w.r.t. computa-
tional complexity.

Theorem 7. Computing the DES controller generator cgDES
can be done in exponential time in the number of available
behaviors, and polynomial in their size.

The size of the plant G⟨S,T ⟩ is indeed exponential in the
number of behaviors, and the procedure to synthesize the su-
pervisor (that is, to extractR) is polynomial in the size of the
plant and the generator for the specification [28, 13]. It fol-
lows then that computing the DES controller generator can be
done in exponential time in the number of behaviors, which
is the best we can hope for [10].

3.2 Implementation in TCT

We close this section by noting that there are, in fact, sev-
eral tools available for the automated synthesis of supervisors
for a discrete event system. The reduction above allows us
to use those tools off-the-shelf. In particular, we have used
TCT [31], in which both the plant and the specification are
formalized as generators, to extract the generator R encod-
ing a supervisor for controlling the language K⟨S,T ⟩↑.

In TCT, generators and recognizers are repre-
sented as standard DES in the form of a 5-tuple
⟨Size, Init,Mark,Voc,Tran⟩: Size is the number of states (the
standard state set is {0, . . . , Size − 1}); Init is the initial

state (always taken to be 0); Mark lists the marker states;
Voc are the vocal states (not needed here); and Tran are the
transitions. A transition is a triple ⟨s, e, s′⟩ representing a
transition from s to s′ with label e ∈ E, where E is the set
of possible event labels, encoded as integers. To distinguish
between controllable and uncontrollable events, the tool
assumes that all controllable events are represented with
even integers, uncontrollable ones with odd integers.

For example, the generator G and the specification K2

from Example 3 are encoded in ADS format as follows:

G
State size: 4
Marker states: 0
Vocal states:

Transitions:
0 1 1
1 3 1
1 0 2
2 9 3
2 5 1
1 7 0

K
State size: 1
Marker states: 0
Vocal states:

Transitions:
0 1 0
0 3 0
0 0 0
0 5 0
0 7 0

Events: 0 = break, 1 = on, 3 = operate, 5 = repair, 7 = off , 9 = dismantle

The encoding is self explanatory and amounts to declaring
the plant generator G and the generator for the desired specifi-
cation K. A transition line 0 1 1 in G encodes the transition
0

onÐ→ 1 in Figure 3. Observe how the generator for K has
only one state, and any event but dismantle is represented by
a loop on that state. Indeed, recall that this generator captures
the specification K2, which excludes dismantle (event 9).
The following steps are required for using the TCT tool to
compute the supervisor:

1. Create the plant G and the specification K in ADS format
for G⟨S,T ⟩ and K⟨S,T ⟩ (above);

2. Use the FD command to convert DES files in ADS format;

3. Use supcon(G,K) command to compute R, namely the
generator representing the supremal controllable sublan-
guage of K, i.e., K⟨S,T ⟩↑;

10

4. Use supreduce(R) to minimize the generator’s size
(this step is optional);

5. Compute control patterns via condat(G,R), where a
control pattern is the set of (controllable) events that must
be disabled in each state of the plant.

In this example, the generator R is as the plant in Fig-
ure 2 but without state 3. Accordingly, the TCT com-
mand condat(G,R) outputs 2:9, which (only) disables
dismantle (event 9) in state 2 of G.

4 Supremal Realizable Target Frag-
ment

Suppose we are given a target behavior T and an avail-
able system S such that no exact composition for T in S
is possible—the target cannot be completely realized in the
system. A mere “no solution” answer is unsatisfactory in
most cases. The need to look beyond exact compositions was
first recognized by Stroeder and Pagnucco [26], were they ar-
gue that one should look for “approximations” in problem in-
stances not admitting exact compositions. Then, Yadav and
Sardina [29] provided the first attempt to define and study
properties of such approximations. Subsequently, these op-
timal approximations were refined and named supremal re-
alizable target fragments (SRTF) in [30]. In this section, we
show how to adapt the composition plant G⟨S,T ⟩ to look for
SRTFs (rather than exact composition) for the special case of
deterministic available systems (i.e., one where all available
behaviors are deterministic).

Roughly speaking, an SRTF is a “fragment” of the target
behavior which accommodates an exact composition and is
closest to the (original) target module. It turns out that there
is an exact solution for the original target iff there exists an
SRTF that is simulation equivalent to it (a property that can
be checked in polynomial time). More surprising is the fact
that SRTFs are unique (up to simulation equivalence). Con-
cretely, Yadav and Sardina [29] first proposed to allow for
nondeterministic target behaviors but model user’s requests
as target transitions (instead of just actions). By doing that,
full controllability of the target module is maintained while
allowing approximating the original target as much as possi-
ble. The definition of SRTFs, then, relies on the formal no-
tion of simulation [16], already discussed in Section 2.1. A
target behavior T̃ = ⟨T̃ , Ãt, t̃0, δ̃t⟩ is a realizable target frag-
ment (RTF) of original target specification T = ⟨T,At, t0, δt⟩
in available system S iff

• T̃ is simulated by T (i.e., T̃ ⪯ T); and

• T̃ has an exact composition in S .

Then, an RTF T̃ is supremal (SRTF) iff there is no other
RTF T̃ ′ such that T̃ ≺ T̃ ′ (i.e., T̃ ⪯ T̃ ′ but T̃ /⪯ T̃ ′). Intu-

itively, a supremal RTF is the closest alternative to the origi-
nal target that can be completely realized. An alternate way
of looking at SRTFs is to view them as the (infinite) union of
all RTFs [30].

The question we are interested in is as follows: is it pos-
sible to adapt the DES-based composition framework devel-
oped above to obtain SRTFs rather than exact compositions?

We answer this question positively for the case when avail-
able behaviors in S are deterministic. The key idea to synthe-
sizing SRTFs by controlling a DES plant is the fact that we
are no longer committed to realize all target traces: we only
need to realize as many as possible. As a consequence, one
can see target actions no more as nondeterministic requests
over which we have no control, but instead as actions one
may decide to fulfill or not, possibly depending on context.
Technically this means that events corresponding to user’s
requests are now assumed controllable—the supervisor can
enable certain requests and disable others.7

So, we start by assuming that system S = ⟨B1, . . . ,Bn⟩ is
deterministic and that, following [29], target modules T may
be, in general, nondeterministic: there may be two transitions
⟨t, a, t′⟩, ⟨t, a, t′′⟩ ∈ δt such that t′ ≠ t′′. To maintain control-
lability, though, user’s requests amount to target transitions
of the form θ = ⟨t, a, t′⟩ ∈ δt. Still, the task is to implement
the action a in the chosen transition θ via behavior delega-
tion.

So, let us define an alternative DES plant Ĝ⟨S,T ⟩ suitable
for synthesising supervisors encoding SRTFs. Note that,
since system S is deterministic, the whole process for one
target request involves now only two γ-transitions, both via
controllable events, namely, (θ ⋅ j) ∈ (δt ⋅ Indx). Note also
that the original target is still assumed to be deterministic (the
alternative supremal target may be nondeterministic).

Definition 7. Let S and T be a (deterministic) system and a
target module, resp., as in Section 3. The maximal composi-
tion plant is defined as Ĝ⟨S,T ⟩ = ⟨Σ,G, g0, γ,Gm⟩, where:

• Σ = Σc∪Σu is the set of events of the plant, where Σu = ∅
and Σc = Indx ∪ δt;

• G = T ×B1×. . .×Bn×(δt∪{e}) is the set of plant states;

• g0 = ⟨t0, b01, . . . , b0n, e⟩ is the initial state of Ĝ⟨S,T ⟩;

• γ ∶ G × Σ → G is the plant’s transition function where
γ(⟨t, b1, . . . , bn, req⟩, σ) is equal to:

– ⟨t, b1, . . . , bn, σ⟩ if req = e and σ ∈ δt;
7Note that unlike what is often done in a standard DES applications, we

do not want to control something in the real world that was not previously
controllable, something that usually requires more capabilities (e.g., new
actuators). The “real world” remains the same (i.e., the available behaviors),
and we now control what the user will be allowed to potentially request (i.e.,
the final target specification, the SRTF).

11

– ⟨t′, b1, . . . , b′σ, . . . , bn, e⟩ if req = ⟨t, a, t′⟩ ∈ δt, σ ∈
Indx and b′σ = δσ(bσ, a).

• Gm = T ×B1 × . . . ×Bn × {e}. ∎

Notably, both target transition requests and behavior delega-
tions are now controllable: the supervisor is allowed to forbid
(i.e., disable) target requests.

As before, we just take K̂⟨S,T ⟩ = Lm(Ĝ⟨S,T ⟩) as the
specification language to control (in the maximal composi-
tion plant). To build a SRTF for target T in system S , we
first compute the language K̂⟨S,T ⟩↑, and then build its corre-
sponding generator R̂ = ⟨Σ, Y, y0, ρ, Ym⟩. Finally, we extract
R̂ the alternative, possibly nondeterministic, target behavior
T ∗
⟨S,T ⟩ = ⟨T ∗,At, y0, δ

∗

t ⟩, where:

• T ∗ = {y ∣ y ∈ Y, p ∈ (δt ⋅ Indx)∗, y = ρ(y0, p)}; and

• δ∗t ⊆ T ∗ × At × T ∗ is such that y′ ∈ δ∗t (y, a) iff y′ =
ρ(y, θ ⋅ j), where j ∈ Indx, θ ∈ δt, and θ = ⟨t, a, t′⟩.

Next, we relate system histories to words of plant Ĝ⟨S,T ⟩.
Differently from before, however, histories do not hold
enough information for this purpose, because the target is
now nondeterministic. We then make use of the following
definitions, to relate a target trace τ and an induced system
history h ∈HP,τ (for some P) to a word in L(Ĝ⟨S,T ⟩). Given

a target trace τ = t0
a1Ð→ ⋯ a`Ð→ t`, the word word(τ, h) cor-

responding to an induced system history h = b⃗0
a1,j1Ð→ ⋯ a`,j`Ð→

b⃗` is

word(τ, h) ∶= (⟨t0, a1, t1⟩ ⋅ j1) ⋅ . . . ⋅ (⟨t`−1, a`, t`⟩ ⋅ j`).

We now present the key results for our technique.

Lemma 2. P is a composition for an RTF T̃ of T in S iff
{word(τ, h) ∣ τ ∈ T̃ ∧ h ∈HP,τ} ⊆ K̂⟨S,T ⟩↑.

Proof. (⇒) Assume by contradiction that there exists a com-
position P for T̃ in S such that for some target trace τ =
t0

a1Ð→ t1
a2Ð→ ⋯ a`Ð→ t` of T̃ and induced history h ∈ HP,τ ,

we have P (h, θ) = j but word(τ, h) ⋅ θ ⋅ j /∈ K̂⟨S,T ⟩↑, where
θ = ⟨t`, a, t`+1⟩ is the new target transition been requested.
This implies that word(τ, h) ⋅ θ ⋅ j is not allowed by V , from
the initial state g0. Similarly to Lemma 1, either

(1) word(τ, h) ⋅ θ /∈ L(Ĝ⟨S,T ⟩) or

(2) word(τ, h) ⋅ θ ⋅ j /∈ L(Ĝ⟨S,T ⟩) or

(3) for all words w ∈ Lm(Ĝ⟨S,T ⟩) with w > word(τ, h) ⋅ θ ⋅ j
we have w /∈ K̂⟨S,T ⟩↑.

Without loss of generality, assume θ = ⟨t`, a, t`+1⟩. If (1) is
true, then from the definition of Ĝ⟨S,T ⟩ (transition function γ,
first item) the transition θ is not in δt, thus T̃ is not an RTF
of T , as T̃ /⪯ T . Similarly, case (2) violates the assumption

that P is a composition of T̃ , as behaviour j is not able to
perform the action a from its current local state. Indeed, any
legal delegation of action a to any behaviour is considered in
Ĝ⟨S,T ⟩ (transition function γ, second item). Case (3) can be
excluded by considering cases (1)(2) by induction on `.

(⇐) Assume by contradiction this is not the case. Then
there exists a word word(τ, h) ∈ K̂⟨S,T ⟩↑ for some trace τ
of an RTF T̃ of T in S and history h ∈ HP,τ such that P
is not a composition of T̃ in S . It means that for some θ =
⟨stt(last(h)), a, t′⟩ in T̃ we have P (h, θ) = j but behavior
j can not perform action a, namely there is no b′j such that
b′j ∈ δj(stj(last(h)), a). Hence, according to Ĝ⟨S,T ⟩ (and its
transition function γ), word(h, τ) ⋅θ ⋅ j /∈ L(Ĝ⟨S,T ⟩), and we
get a contradiction. ◻

Theorem 8 (Soundness). Let T be a target and S a deter-
ministic system. Then, T ∗

⟨S,T ⟩ is a SRTF of T in S.

Proof. By construction T ∗
⟨S,T ⟩ is an RTF of T in S. The

proof is left to the reader, as it is evident by the fact that
L(R̂) = K̂⟨S,T ⟩↑ ⊆ L(Ĝ⟨S,T ⟩), and transitions in Ĝ⟨S,T ⟩ are
only defined wrt T ’s evolution (function δt).

It remains to show that T ∗
⟨S,T ⟩ is indeed the maximal one.

Suppose T ↑ is the SRTF of T in S and T ∗
⟨S,T ⟩ /⪰ T ↑. There-

fore, there exists a trace τ = t0
a1Ð→ ⋯ a`Ð→ t`

a`+1Ð→ t`+1 of T ↑
that is not in T ∗

⟨S,T ⟩, and the simulation “breaks” at t`. For-

mally, for any trace t∗0
a1Ð→ ⋯ a`Ð→ t∗` of T ∗

⟨S,T ⟩ with t∗0 = y0

and the same action sequence a1⋯a` as τ , there is no tran-
sition t∗`

a`+1Ð→ t∗`+1: T ∗
⟨S,T ⟩ is unable to perform action a`+1.

However, by Lemma 2, the word word(τ, h) is in K̂⟨S,T ⟩↑,

and the trace t∗0
a1Ð→ ⋯ a`+1Ð→ t∗`+1 has to be a trace of T ∗

⟨S,T ⟩.
So we get a contradiction. Thus T ↑ does not exist and T ∗

⟨S,T ⟩
is an SRTF of T in S . ◻

Observe, the controller generator for T ∗
⟨S,T ⟩ can be com-

puted while building the SRTF itself, by tracking delegations
in R̂, similar to DES-based composition. In fact, we have:

Theorem 9 (Completeness). Let V be a nonblocking super-
visor such that Lm(V /Ĝ⟨S,T ⟩) = K̂⟨S,T ⟩↑. Then, every com-
position P for T ∗

⟨S,T ⟩ in system S can be induced by V .

Proof. Assume by contradiction that there exists a compo-
sition P ′ which can not be induced by V , i.e., it is such
that P ′(h, θ) /∈ V (word(τ, h) ⋅ θ) for some target transition
θ = ⟨t∗`−1, a`, t

∗

` ⟩ and target trace τ = t∗0
a1Ð→ ⋯ a`Ð→ t∗` in

T ∗
⟨S,T ⟩ and some induced system history h ∈ HP ′,τ . Assume

P ′(h, θ) = j. It follows that word(τ, h) ⋅ θ ⋅ j /∈ K̂⟨S,T ⟩↑,
which contradicts Lemma 2. ◻

In words, every supervisor that can control language
K̂⟨S,T ⟩↑ in the maximal composition plant Ĝ⟨S,T ⟩ encodes
all exact compositions of the SRTF T ∗

⟨S,T ⟩ built above.

12

a0 a1

a2

R
E

PA
IR

GOMINE

GODEPOT
UNLOAD

TRUCK B1 c0

c1

DIG L
O

A
D

REPAIR

EXCAVATOR B3

b0b1

b2

LOAD
GODEPOT

UNLOAD

REPAIR GOM
IN

E

LOADER B2

t0 t1 t2 t3 t4

t5
t6 t7 t8

DIG GOMINE

LOAD GODEPOT

UNLOAD

REPAIR

LOAD

GODEPOT

UNLOAD

REPAIR

GOMINEREPAIR

T ∗⟨S,T ⟩

Figure 5: SRTF for a deterministic variant (T as in Figure 1).
Corollary 2. Given a plant Ĝ⟨S,T ⟩ for S and T as above, if
K̂⟨S,T ⟩↑ ≠ ∅ then for any word w ∈ K̂⟨S,T ⟩↑, we have that
stt(g) ⪯ND ⟨st1(g), . . . , stn(g)⟩ where g = γ(g0,w).

The proof proceeds as in the basic case.

Example 8. Figure 5 depicts the SRTF for a deterministic
variant of the problem instance of Figure 1, in which the ex-
cavator can not load the truck twice without being repaired.
Observe that T ∗

⟨S,T ⟩ and T are simulation equivalent, hence
we know that an exact composition exists for the original
specification K. However, since actions LOAD and REPAIR
are now nondeterministic in T ∗

⟨S,T ⟩ (from t1 and t7, respec-
tively), one could, in principle, chose to delegate a nonde-
terministic action to different behaviors based on the tran-
sition requested (cf. Figure 4). Hence, the T ∗

⟨S,T ⟩ is now
more informative than T , in the sense that it allows for more
solutions if the user commits to subsequent choices (here,
whether to dig next or not). The so-obtained representation
of the SRTF is not minimal, but can be easily minimised (e.g.,
by using the supreduce command in TCT — see Section
3.2.) ◻

5 Conclusions

From an Computer Science perspective, planning, SCT, and
behavior composition are all synthesis problems: build a
plan, supervisor, or controller, respectively. Observe that,
at the core, these problems are concerned with qualitative
temporal decision making in dynamic domains and exhibit
strong resemblances in how their problem components are
modeled (e.g., using transition system-like models) and the
solution techniques used (e.g., model checking, search, etc.).
In fact, exploration of the relationship between these three
synthesis tasks has already gained attention [1, 7, 2].

The behavior composition problem can be considered as
a planning problem for a maintenance goal, namely, to al-
ways satisfy the target’s request. There, a plan (i.e., a

controller) prescribes behavior delegations rather than do-
main actions [21]. In particular, various forms of composi-
tion problems have been considered under various planning
frameworks, including planning as model checking [17],
planning in asynchronous domains [7], and nondeterminis-
tic planning [21].

With respect to SCT, planning techniques have been used
for both synthesis of supervisors [2, 3] as well as for diag-
nosis problems [14]. However, the link between composition
and SCT still remains unexplored. To our knowledge, the
only available literature deals with showing the decidability
of mediator synthesis for web-service composition by reduc-
tion to DES [1]. Such work considers a composition setting
involving web services able to exchange messages, and the
task is to synthesise a mediator able to communicate with
them to realize the target specification, instead of an orches-
trator (i.e., a controller) that schedules them.

From the outset, it may seem that behavior composition
and SCT are tackling the same problem, though maybe from
different perspectives: SCT from an Engineering perspective
and composition from a Computer Science one. Nonetheless,
the inherent control problem in SCT and behavior composi-
tion are different in nature. In the latter, one seeks to con-
trol the available behaviors, whereas in the former one can
prevent (some of the) actions. Consider the simple example
shown in Figure 6 with a nondeterministic behavior B1 and
a deterministic behavior B2. See that both behaviors share
the action x; hence, in the enacted system S , x will be non-
deterministic for B1 but not for B2 (as shown by the indexes
used in S). The input in SCT is the whole plant, and it does
not have a notion analogous to available behaviors. There-
fore, component-based nondeterminism cannot be captured
(directly) in a plant, and one has to make delegation events
(i.e., indexes) explicit in the plant, as we showed in this pa-
per. Another important mismatch has to do with the seman-
tics of nondeterminism: the nondeterminism of controllable
actions in a plant is angelic, in the sense that the supervisor
can control its evolution. On the other hand, nondeterminism
of available behaviors is devilish, as it cannot be controlled.
This is one of the reasons why, as far as we know, DES frame-
works do not have a notion similar to ND-simulation [11]. In-
deed, uncertainty is modelled here via (deterministic) uncon-
trollable events [28], whereas nondeterminism [11] is used
to model uncertainty (and partial controllability) in behav-
ior composition. Lastly, the term “composition” itself differs
considerably: in SCT it refers to synchronous product be-
tween sub-systems, instead of an asynchronous realization in
behavior composition literature.

a0

a1

a2

x

x

BEHAVIOR B1

b0 b1
x

BEHAVIOR B2

s0

s1

s2

s3

x,1

x,2

x,1

SYSTEM S

Figure 6: Comparing DES and Behavior Composition.

13

Notwithstanding all the above differences, this paper
shows that a link can indeed be drawn. In particular, we have
demonstrated that solving an AI behavior composition prob-
lem can be seen as finding a supervisor for a certain plant.
In doing so, one can expect to leverage on the solid founda-
tions and extensive work in SCT, as well as on the tools avail-
able in those communities. We have shown, for instance, that
the DES-based encoding can accommodate (meta-level) con-
straint on the composition in a straightforward manner. In ad-
dition, we detailed how to slightly adapt the encoding to look
for “the best possible” target realization when a perfect one
does not exist, though only for the case of deterministic sys-
tems. For practical applicability, experimental work should
follow the work presented here to check whether existing
tools in SCT provide any advantages over existing compo-
sition techniques via game solvers [9, 12] or automated plan-
ners [21].

Once the formal relationship between the two different
synthesis tasks has been established, many possibilities for
future work open up. In fact, we would like to import
notions and techniques common in SCT into the compo-
sition setting, such as hierarchical and tolerance supervi-
sion/composition [8]. An interesting aspect to look at is how
to use the marked language of specification K in order to en-
code constraints. For example, one may want to impose that
certain complex (high-level) tasks or processes built from do-
main action executions may not be started if their termination
cannot be guaranteed. So, some goods in a factory produc-
tion chain should not be cleaned unless it is guaranteed that
they will be packaged and disposed afterwards. So far, we
have only used the marked language (of the plant) to force
complete termination of each action-request and delegation
step. On the other direction, probably the most interesting
aspect to explore is the use of automated planning systems
and game solvers to solve DES problems.

References
[1] Philippe Balbiani, Fahima Cheikh, and Guillaume Feuillade. Com-

position of interactive web services based on controller synthesis. In
Proc. of the IEEE Congress on Services (SERVICES), pages 521–528,
2008.

[2] Michel Barbeau, Froduald Kabanza, and Richard St-Denis. Synthe-
sizing plant controllers using real-time goals. In Proc. of IJCAI, pages
791–800, 1995.

[3] Michel Barbeau, Froduald Kabanza, and Richard St-Denis. An effi-
cient algorithm for controller synthesis under full observation. Journal
of Algorithms, 25(1):144–161, 1997.

[4] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Rick Hull,
and Massimo Mecella. Automatic composition of transition-based se-
mantic web services with messaging. In Proc. of the International
Conference on Very Large Databases (VLDB), pages 613–624, 2005.

[5] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Massimo Mecella. Automatic service composition

based on behavioural descriptions. International Journal of Coopera-
tive Information Systems, 14(4):333–376, 2005.

[6] Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, and Fabio
Patrizi. Automatic service composition via simulation. International
Journal of Foundations of Computer Science, 19(2):429–452, 2008.

[7] Piergiorgio Bertoli, Marco Pistore, and Paolo Traverso. Automated
composition of web services via planning in asynchronous domains.
Artificial Intelligence, 174(3):316–361, 2010.

[8] Christos G. Cassandras and Stephane Lafortune. Introduction to Dis-
crete Event Systems. Springer, Secaucus, NJ, USA, 2006. ISBN
0387333320.

[9] Giuseppe De Giacomo and Fabio Patrizi. Automated composition of
nondeterministic stateful services. In Proc. of the International Work-
shop on Web Services and Formal Methods (WSFM), volume 6194 of
LNCS, pages 147–160. Springer, 2010.

[10] Giuseppe De Giacomo and Sebastian Sardina. Automatic synthesis of
new behaviors from a library of available behaviors. In Manuela M.
Veloso, editor, Proc. of IJCAI, pages 1866–1871, Hyderabad, India,
January 2007.

[11] Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardina. Auto-
matic behavior composition synthesis. Artificial Intelligence Journal,
196:106–142, 2013. doi: 10.1016/j.artint.2012.12.001.

[12] Guiseppe De Giacomo and Paolo Felli. Agent composition synthesis
based on ATL. In Proc. of Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), pages 499–506, Toronto, Canada, 2010. IFAAMAS.

[13] P. Gohari and W. M. Wonham. On the complexity of supervisory con-
trol design in the RW framework. IEEE Transactions on Systems, Man,
and Cybernetics, 30(5):643–652, 2000. ISSN 1083-4419.

[14] Alban Grastien, J Rintanen Anbulagan, Jussi Rintanen, and Elena Ke-
lareva. Diagnosis of discrete-event systems using satisfiability algo-
rithms. In Proc. of the National Conference on Artificial Intelligence
(AAAI), 2007.

[15] Yoad Lustig and Moshe Y. Vardi. Synthesis from component libraries.
In Proc. of the International Conference on Foundations of Software
Science and Computational Structures (FOSSACS), volume 5504 of
LNCS, pages 395–409, 2009.

[16] Robin Milner. An algebraic definition of simulation between pro-
grams. In Proc. of IJCAI, pages 481–489, 1971.

[17] Marco Pistore, Fabio Barbon, Piergiorgio Bertoli, Dmitry Shaparau,
and Paolo Traverso. Planning and monitoring web service composi-
tion. In Artificial Intelligence: Methodology, Systems, and Applica-
tions, pages 106–115. Springer, 2004.

[18] Knut Åkesson, Martin Fabian, Hugo Flordal, and Arash Vahidi.
Supremica – a tool for verification and synthesis of discrete event su-
pervisors. In Proc. of the 11th Mediterranean Conference on Control
and Automation, 2003.

[19] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM Journal on Control and Optimization,
25:206–230, 1987. ISSN 0363-0129.

[20] P.J.G. Ramadge and W.M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81–98, 1989.

[21] Miguel Ramirez, Nitin Yadav, and Sebastian Sardina. Behavior com-
position as fully observable non-deterministic planning. In Proc. of
ICAPS, pages 180–188, 2013.

14

[22] C. Reiser, A.E.C. da Cunha, and J.E.R. Cury. The environment GRAIL
for supervisory control of discrete event systems. In Proc. of 8th Inter-
national Workshop on Discrete Event Systems, pages 390 –391, july
2006.

[23] L. Ricker, S. Lafortune, and S. Gene. DESUMA: A tool integrating
GIDDES and UMDES. In Proc. of 8th International Workshop on
Discrete Event Systems workshop, pages 392 –393, 2006.

[24] Jussi Rintanen. Complexity of planning with partial observability. In
Proc. of ICAPS, pages 345–354, 2004.

[25] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. Foun-
dations of Generalized Planning. Technical Report UM-CS-2008-039,
Dept. of Computer Science, Univ. of Massachusetts, Amherst, 2008.

[26] Thomas Stroeder and Maurice Pagnucco. Realising deterministic be-
haviour from multiple non-deterministic behaviours. In Proc. of IJCAI,
pages 936–941, Pasadena, CA, USA, July 2009. AAAI Press.

[27] W. M. Wonham. Supervisory control of discrete-event systems. Tech-
nical Report ECE 1636F/1637S 11-12, University of Toronto, Canada,
2012.

[28] W. M. Wonham and P. J. Ramadge. On the supremal controllable sub-
language of a given language. SIAM Journal on Control and Optimiza-
tion, 25(3):637–659, 1987.

[29] N. Yadav and S. Sardina. Qualitative approximate behavior composi-
tion. Logics in Artificial Intelligence, pages 450–462, 2012.

[30] Nitin Yadav, Paolo Felli, De Giacomo Giuseppe, and Sebastian Sar-
dina. Supremal realizability of behaviors with uncontrollable exoge-
nous events. In Francesca Rossi, editor, Proc. of IJCAI, pages 1176–
1182, Beijing, China, August 2013. AAAI Press.

[31] Zhonghua Zhang and W. M. Wonham. STCT: An efficient algorithm
for supervisory control design. In Symposium on Supervisory Control
of Discrete Event Systems, pages 249–6399, 2001.

15

