43 research outputs found

    Drug utilization review of general anaesthetic agents in a tertiary care hospital

    Get PDF
    Background: Drug utilization review plays a key role in helping the healthcare system to understand, interpret and improve the prescribing, administration and use of medications. The principle aim of drug utilization review was to facilitate rational use of drugs, which implies the prescription of a well documented drug in an optimal dose on the right indication.Methods: An observational study of anaesthetic practice was carried out in the department of Anaesthesiology in tertiary care hospital, Varanasi after approval from institutional ethical committee. The data of patients who underwent surgery under general anaesthesia were collected in predesigned patient profile form and were analyzed for drug utilization review.Results: 110 patients were enrolled with mean age 35.30±17.99 years and mean weight 51.32±15.32kg. Laparoscopic cholecystectomy (43.63%), otorhinolaryngology surgeries (36.36%), cardiothoracic vascular surgery (4.54%), neurosurgery (4.54%) and other surgeries (10.93%) required general anaesthetic agents were reviewed. Propofol (93.63%) and etomidate (6.36%) were used for induction of anaesthesia. Propofol (45.45%), isoflurane (53.63%), sevoflurane (0.90%) were administered for maintenance of anaesthesia in various surgeries. Adverse outcomes observed were hypotension (7.27%), bradycardia (6.36%), hypertension (3.63%) and post operative nausea and vomiting (PONV) (2.72%).Conclusions: Propofol is most commonly prescribed drug for induction of anaesthesia. Isoflurane is most commonly prescribed inhalational anaesthetic agent for maintenance of anaesthesia followed by Propofol. Hypotension is most common adverse outcome observed

    Susceptibility profile of blaOXA-23 and metallo-β-lactamases co-harbouring isolates of carbapenem resistant Acinetobacter baumannii (CRAB) against standard drugs and combinations

    Get PDF
    BackgroundThe rapid emergence of carbapenem resistant Acinetobacter baumannii (CRAB) has resulted in an alarming situation worldwide. Realizing the dearth of literature on susceptibility of CRAB in genetic context in the developing region, this study was performed to determine the susceptibility profile against standard drugs/combinations and the association of in-vitro drug synergy with the prevalent molecular determinants.Methods and findingsA total of 356 clinical isolates of A. baumannii were studied. Confirmation of the isolates was done by amplifying recA and ITS region genes. Susceptibility against standard drugs was tested by Kirby Bauer disc diffusion. Minimum inhibitory concentration (MIC), MIC50 and MIC90 values against imipenem, meropenem, doripenem, ampicillin/sulbactam, minocycline, amikacin, polymyxin B, colistin and tigecycline was tested as per guidelines. Genes encoding enzymes classes A (blaGES, blaIMI/NMC-A, blaSME, blaKPC), B (blaIMP, blaVIM, blaNDM) and D (blaOXA-51,blaOXA-23 and blaOXA-58) were detected by multiplex polymerase chain reaction. Synergy against meropenem-sulbactam and meropenem-colistin combinations was done by checkerboard MIC method. Correlation of drug synergy and carbapenemase encoding genes was statistically analyzed.ResultsOf the total, resistance above 90% was noted against gentamicin, ciprofloxacin, levofloxacin, ceftazidime, cefepime, ceftriaxone, cotrimoxazole and piperacillin/tazobactam. By MIC, resistance rates from highest to lowest was seen against imipenem 89.04% (n=317), amikacin 80.33% (n=286), meropenem 79.49% (n=283), doripenem 77.80% (n=277), ampicillin/sulbactam 71.62% (n=255), tigecycline 55.61% (n=198), minocycline 14.04% (n=50), polymyxin B 10.11% (n=36), and colistin 2.52% (n=9). CRAB was 317 (89.04%), 81.46% (n=290) were multidrug resistant and 13.48% (n=48) were extensively drug resistant. All the CRAB isolates harboured blaOXA-51 gene (100%) and 94% (n=298) blaOXA-23 gene. The blaIMP gene was most prevalent 70.03% (n=222) followed by blaNDM, 59.62% (n=189). Majority (87.69%, 278) were co-producers of classes D and B carbapenemases, blaOXA-23 with blaIMP and blaNDM being the commonest. Synergy with meropenem-sulbactam and meropenem-colistin was 47% and 57% respectively. Reduced synergy (p= <0.0001) was noted for those harbouring blaOXA-51+blaOXA-23with blaNDM gene alone or co-producers.ConclusionPresence of blaNDM gene was a significant cause of synergy loss in meropenem-sulbactam and meropenem-colistin. In blaNDM endemic regions, tigecycline, minocycline and polymyxins could be viable options against CRAB isolates with more than one carbapenemase encoding genes

    Discrete interferences optimum beamformer in correlated signal and interfering noise

    Get PDF
    This paper introduces a significant special situation where the noise is a collection of D-plane interference signals and the correlated noise of D+1 is less than the number of array components. An optimal beamforming processor based on the minimum variance distortionless response (MVDR) generates and combines appropriate statistics for the D+1 model. Instead of the original space of the N-dimensional problem, the interference signal subspace is reduced to D+1. Typical antenna arrays in many modern communication networks absorb waves generated from multiple point sources. An analytical formula was derived to improve the signal to interference and noise ratio (SINR) obtained from the steering errors of the two beamformers. The proposed MVDR processor-based beamforming does not enforce general constraints. Therefore, it can also be used in systems where the steering vector is compromised by gain. Simulation results show that the output of the proposed beamformer based on the MVDR processor is usually close to the ideal state within a wide range of signal-to-noise ratio and signal-to-interference ratio. The MVDR processor-based beamformer has been experimentally evaluated. The proposed processor-based MVDR system significantly improves performance for large interference white noise ratio (INR) in the sidelobe region and provide an appropriate beam pattern

    Acute myocardial infarction in an 18 year old South Indian girl with familial hypercholesterolemia: a case report

    Get PDF
    Familial hypercholesterolemia is a single gene disorder with an autosomal dominant pattern of inheritance. Here we report an 18 year old South Indian girl who presented with myocardial infarction. She had xanthomas and an elevated serum low density lipoprotein cholesterol (LDL-C). Her mother and maternal uncle had died at a young age due to myocardial infarction. Her only sibling, 15 year old younger sister also had xanthomas and an elevated LDL-C. This report is to emphasise the need to clinically recognize xanthomas and its association with elevated LDL-C, premature atherosclerosis and familial inheritance. Early diagnosis and early initiation of treatment will save the affected individual and the other family members

    Accelerating Defect Predictions in Semiconductors Using Graph Neural Networks

    Full text link
    Here, we develop a framework for the prediction and screening of native defects and functional impurities in a chemical space of Group IV, III-V, and II-VI zinc blende (ZB) semiconductors, powered by crystal Graph-based Neural Networks (GNNs) trained on high-throughput density functional theory (DFT) data. Using an innovative approach of sampling partially optimized defect configurations from DFT calculations, we generate one of the largest computational defect datasets to date, containing many types of vacancies, self-interstitials, anti-site substitutions, impurity interstitials and substitutions, as well as some defect complexes. We applied three types of established GNN techniques, namely Crystal Graph Convolutional Neural Network (CGCNN), Materials Graph Network (MEGNET), and Atomistic Line Graph Neural Network (ALIGNN), to rigorously train models for predicting defect formation energy (DFE) in multiple charge states and chemical potential conditions. We find that ALIGNN yields the best DFE predictions with root mean square errors around 0.3 eV, which represents a prediction accuracy of 98 % given the range of values within the dataset, improving significantly on the state-of-the-art. Models are tested for different defect types as well as for defect charge transition levels. We further show that GNN-based defective structure optimization can take us close to DFT-optimized geometries at a fraction of the cost of full DFT. DFT-GNN models enable prediction and screening across thousands of hypothetical defects based on both unoptimized and partially-optimized defective structures, helping identify electronically active defects in technologically-important semiconductors

    Utilization of mechanical power and associations with clinical outcomes in brain injured patients: a secondary analysis of the extubation strategies in neuro-intensive care unit patients and associations with outcome (ENIO) trial

    Get PDF
    Background: There is insufficient evidence to guide ventilatory targets in acute brain injury (ABI). Recent studies have shown associations between mechanical power (MP) and mortality in critical care populations. We aimed to describe MP in ventilated patients with ABI, and evaluate associations between MP and clinical outcomes. Methods: In this preplanned, secondary analysis of a prospective, multi-center, observational cohort study (ENIO, NCT03400904), we included adult patients with ABI (Glasgow Coma Scale ≤ 12 before intubation) who required mechanical ventilation (MV) ≥ 24 h. Using multivariable log binomial regressions, we separately assessed associations between MP on hospital day (HD)1, HD3, HD7 and clinical outcomes: hospital mortality, need for reintubation, tracheostomy placement, and development of acute respiratory distress syndrome (ARDS). Results: We included 1217 patients (mean age 51.2 years [SD 18.1], 66% male, mean body mass index [BMI] 26.3 [SD 5.18]) hospitalized at 62 intensive care units in 18 countries. Hospital mortality was 11% (n = 139), 44% (n = 536) were extubated by HD7 of which 20% (107/536) required reintubation, 28% (n = 340) underwent tracheostomy placement, and 9% (n = 114) developed ARDS. The median MP on HD1, HD3, and HD7 was 11.9 J/min [IQR 9.2-15.1], 13 J/min [IQR 10-17], and 14 J/min [IQR 11-20], respectively. MP was overall higher in patients with ARDS, especially those with higher ARDS severity. After controlling for same-day pressure of arterial oxygen/fraction of inspired oxygen (P/F ratio), BMI, and neurological severity, MP at HD1, HD3, and HD7 was independently associated with hospital mortality, reintubation and tracheostomy placement. The adjusted relative risk (aRR) was greater at higher MP, and strongest for: mortality on HD1 (compared to the HD1 median MP 11.9 J/min, aRR at 17 J/min was 1.22, 95% CI 1.14-1.30) and HD3 (1.38, 95% CI 1.23-1.53), reintubation on HD1 (1.64; 95% CI 1.57-1.72), and tracheostomy on HD7 (1.53; 95%CI 1.18-1.99). MP was associated with the development of moderate-severe ARDS on HD1 (2.07; 95% CI 1.56-2.78) and HD3 (1.76; 95% CI 1.41-2.22). Conclusions: Exposure to high MP during the first week of MV is associated with poor clinical outcomes in ABI, independent of P/F ratio and neurological severity. Potential benefits of optimizing ventilator settings to limit MP warrant further investigation

    Développement du "SEM in situ/operando" et son application à l'étude des "défis interfaciaux" associés aux "batteries solides à base de métal Li"

    No full text
    Une batterie dite "tout solide" utilise des électrodes solides et des électrolytes solides (ES) au lieu d'électrolytes liquides. L'un des principaux défis depuis plusieurs décennies est l'impossibilité d'utiliser le lithium métal comme anode pour les batteries à électrolyte liquide pour des raisons de sécurité. Cependant, c'est le métal qui possède la capacité spécifique théorique la plus élevée et le potentiel de réduction le plus faible. Ainsi, son utilisation comme anode permettrait de maximiser la densité énergétique. Avec les progrès des électrolytes solides dont certains dépassent la conductivité ionique des électrolytes liquides commerciaux, il y a un nouvel espoir de pouvoir enfin l'utiliser comme électrode tout en assurant la sécurité. Cependant, la route vers le succès des batteries tout solide est parsemée de défis notamment au niveau des "interfaces solide-solide". L'objectif de ce travail de doctorat est de contribuer à la compréhension fondamentale existante des défis interfaciaux en utilisant une cellule développée en interne pour réaliser des expériences de microscopie électronique à balayage (MEB) in situ/operando. Parmi les différentes techniques utilisées pour comprendre les défis posés par les batteries, la microscopie électronique à balayage (MEB) offre un bon compromis en termes de taille et de résolution d'observation avec la possibilité de réaliser des études avec une bonne résolution spatiale. En combinant l'imagerie avec des analyses chimiques par spectroscopie à dispersion d'énergie aux rayons X (EDX), une étude complète des modifications morphologiques et chimiques est possible. Pour compléter la compréhension des résultats obtenus par in situ/operando SEM, de la spectroscopie d'impédance électrochimique (EIS) a été réalisée pour obtenir des informations supplémentaires du point de vue électrochimiqueA Solid-state battery uses solid electrodes and Solid Electrolytes (SEs) instead of liquid electrolytes. One of the key challenges for decades has been the inability to use Li metal as an anode for liquid electrolyte-based batteries for safety reasons. Li has the highest theoretical specific capacity and lowest reduction potential. Thus using Li as an anode ensures maximizing the energy density. With advances in the SEs exceeding the ionic conductivity of commercial liquid electrolytes, there’s new emerging hope to finally use Li metal anodes. Thus the key motive for implementing SEs is to ensure safety and use the "Holy grail" Li metal anode. However, the road to the success of Li-solid state batteries is full of "solid-solid interfacial challenges". The goal of this PhD work is to contribute to the existing fundamental understanding of interfacial challenges using the in-house developed cell to perform in situ/operando scanning electron microscopy (SEM). Among different techniques being used to understand the fundamentals of battery challenges, scanning electron microscopy (SEM) offers a good compromise in terms of size and resolution of observation with the possibility to perform studies with a good spatial resolution. By combining the imaging with chemical analyses by X-ray energy dispersive spectroscopy (EDX), a complete survey of morphological and chemical modification is possible. The understanding from in situ/ SEM has been coupled with Electrochemical Impedance Spectroscopy (EIS) to gain further insights from the electrochemical point of vie

    Développement du "SEM in situ/operando" et son application à l'étude des "défis interfaciaux" associés aux "batteries solides à base de métal Li"

    No full text
    A Solid-state battery uses solid electrodes and Solid Electrolytes (SEs) instead of liquid electrolytes. One of the key challenges for decades has been the inability to use Li metal as an anode for liquid electrolyte-based batteries for safety reasons. Li has the highest theoretical specific capacity and lowest reduction potential. Thus using Li as an anode ensures maximizing the energy density. With advances in the SEs exceeding the ionic conductivity of commercial liquid electrolytes, there’s new emerging hope to finally use Li metal anodes. Thus the key motive for implementing SEs is to ensure safety and use the "Holy grail" Li metal anode. However, the road to the success of Li-solid state batteries is full of "solid-solid interfacial challenges". The goal of this PhD work is to contribute to the existing fundamental understanding of interfacial challenges using the in-house developed cell to perform in situ/operando scanning electron microscopy (SEM). Among different techniques being used to understand the fundamentals of battery challenges, scanning electron microscopy (SEM) offers a good compromise in terms of size and resolution of observation with the possibility to perform studies with a good spatial resolution. By combining the imaging with chemical analyses by X-ray energy dispersive spectroscopy (EDX), a complete survey of morphological and chemical modification is possible. The understanding from in situ/ SEM has been coupled with Electrochemical Impedance Spectroscopy (EIS) to gain further insights from the electrochemical point of viewUne batterie dite "tout solide" utilise des électrodes solides et des électrolytes solides (ES) au lieu d'électrolytes liquides. L'un des principaux défis depuis plusieurs décennies est l'impossibilité d'utiliser le lithium métal comme anode pour les batteries à électrolyte liquide pour des raisons de sécurité. Cependant, c'est le métal qui possède la capacité spécifique théorique la plus élevée et le potentiel de réduction le plus faible. Ainsi, son utilisation comme anode permettrait de maximiser la densité énergétique. Avec les progrès des électrolytes solides dont certains dépassent la conductivité ionique des électrolytes liquides commerciaux, il y a un nouvel espoir de pouvoir enfin l'utiliser comme électrode tout en assurant la sécurité. Cependant, la route vers le succès des batteries tout solide est parsemée de défis notamment au niveau des "interfaces solide-solide". L'objectif de ce travail de doctorat est de contribuer à la compréhension fondamentale existante des défis interfaciaux en utilisant une cellule développée en interne pour réaliser des expériences de microscopie électronique à balayage (MEB) in situ/operando. Parmi les différentes techniques utilisées pour comprendre les défis posés par les batteries, la microscopie électronique à balayage (MEB) offre un bon compromis en termes de taille et de résolution d'observation avec la possibilité de réaliser des études avec une bonne résolution spatiale. En combinant l'imagerie avec des analyses chimiques par spectroscopie à dispersion d'énergie aux rayons X (EDX), une étude complète des modifications morphologiques et chimiques est possible. Pour compléter la compréhension des résultats obtenus par in situ/operando SEM, de la spectroscopie d'impédance électrochimique (EIS) a été réalisée pour obtenir des informations supplémentaires du point de vue électrochimiqu

    Développement du "SEM in situ/operando" et son application à l'étude des "défis interfaciaux" associés aux "batteries solides à base de métal Li"

    No full text
    A Solid-state battery uses solid electrodes and Solid Electrolytes (SEs) instead of liquid electrolytes. One of the key challenges for decades has been the inability to use Li metal as an anode for liquid electrolyte-based batteries for safety reasons. Li has the highest theoretical specific capacity and lowest reduction potential. Thus using Li as an anode ensures maximizing the energy density. With advances in the SEs exceeding the ionic conductivity of commercial liquid electrolytes, there’s new emerging hope to finally use Li metal anodes. Thus the key motive for implementing SEs is to ensure safety and use the "Holy grail" Li metal anode. However, the road to the success of Li-solid state batteries is full of "solid-solid interfacial challenges". The goal of this PhD work is to contribute to the existing fundamental understanding of interfacial challenges using the in-house developed cell to perform in situ/operando scanning electron microscopy (SEM). Among different techniques being used to understand the fundamentals of battery challenges, scanning electron microscopy (SEM) offers a good compromise in terms of size and resolution of observation with the possibility to perform studies with a good spatial resolution. By combining the imaging with chemical analyses by X-ray energy dispersive spectroscopy (EDX), a complete survey of morphological and chemical modification is possible. The understanding from in situ/ SEM has been coupled with Electrochemical Impedance Spectroscopy (EIS) to gain further insights from the electrochemical point of viewUne batterie dite "tout solide" utilise des électrodes solides et des électrolytes solides (ES) au lieu d'électrolytes liquides. L'un des principaux défis depuis plusieurs décennies est l'impossibilité d'utiliser le lithium métal comme anode pour les batteries à électrolyte liquide pour des raisons de sécurité. Cependant, c'est le métal qui possède la capacité spécifique théorique la plus élevée et le potentiel de réduction le plus faible. Ainsi, son utilisation comme anode permettrait de maximiser la densité énergétique. Avec les progrès des électrolytes solides dont certains dépassent la conductivité ionique des électrolytes liquides commerciaux, il y a un nouvel espoir de pouvoir enfin l'utiliser comme électrode tout en assurant la sécurité. Cependant, la route vers le succès des batteries tout solide est parsemée de défis notamment au niveau des "interfaces solide-solide". L'objectif de ce travail de doctorat est de contribuer à la compréhension fondamentale existante des défis interfaciaux en utilisant une cellule développée en interne pour réaliser des expériences de microscopie électronique à balayage (MEB) in situ/operando. Parmi les différentes techniques utilisées pour comprendre les défis posés par les batteries, la microscopie électronique à balayage (MEB) offre un bon compromis en termes de taille et de résolution d'observation avec la possibilité de réaliser des études avec une bonne résolution spatiale. En combinant l'imagerie avec des analyses chimiques par spectroscopie à dispersion d'énergie aux rayons X (EDX), une étude complète des modifications morphologiques et chimiques est possible. Pour compléter la compréhension des résultats obtenus par in situ/operando SEM, de la spectroscopie d'impédance électrochimique (EIS) a été réalisée pour obtenir des informations supplémentaires du point de vue électrochimiqu

    Développement du "SEM in situ/operando" et son application à l'étude des "défis interfaciaux" associés aux "batteries solides à base de métal Li"

    No full text
    A Solid-state battery uses solid electrodes and Solid Electrolytes (SEs) instead of liquid electrolytes. One of the key challenges for decades has been the inability to use Li metal as an anode for liquid electrolyte-based batteries for safety reasons. Li has the highest theoretical specific capacity and lowest reduction potential. Thus using Li as an anode ensures maximizing the energy density. With advances in the SEs exceeding the ionic conductivity of commercial liquid electrolytes, there’s new emerging hope to finally use Li metal anodes. Thus the key motive for implementing SEs is to ensure safety and use the "Holy grail" Li metal anode. However, the road to the success of Li-solid state batteries is full of "solid-solid interfacial challenges". The goal of this PhD work is to contribute to the existing fundamental understanding of interfacial challenges using the in-house developed cell to perform in situ/operando scanning electron microscopy (SEM). Among different techniques being used to understand the fundamentals of battery challenges, scanning electron microscopy (SEM) offers a good compromise in terms of size and resolution of observation with the possibility to perform studies with a good spatial resolution. By combining the imaging with chemical analyses by X-ray energy dispersive spectroscopy (EDX), a complete survey of morphological and chemical modification is possible. The understanding from in situ/ SEM has been coupled with Electrochemical Impedance Spectroscopy (EIS) to gain further insights from the electrochemical point of viewUne batterie dite "tout solide" utilise des électrodes solides et des électrolytes solides (ES) au lieu d'électrolytes liquides. L'un des principaux défis depuis plusieurs décennies est l'impossibilité d'utiliser le lithium métal comme anode pour les batteries à électrolyte liquide pour des raisons de sécurité. Cependant, c'est le métal qui possède la capacité spécifique théorique la plus élevée et le potentiel de réduction le plus faible. Ainsi, son utilisation comme anode permettrait de maximiser la densité énergétique. Avec les progrès des électrolytes solides dont certains dépassent la conductivité ionique des électrolytes liquides commerciaux, il y a un nouvel espoir de pouvoir enfin l'utiliser comme électrode tout en assurant la sécurité. Cependant, la route vers le succès des batteries tout solide est parsemée de défis notamment au niveau des "interfaces solide-solide". L'objectif de ce travail de doctorat est de contribuer à la compréhension fondamentale existante des défis interfaciaux en utilisant une cellule développée en interne pour réaliser des expériences de microscopie électronique à balayage (MEB) in situ/operando. Parmi les différentes techniques utilisées pour comprendre les défis posés par les batteries, la microscopie électronique à balayage (MEB) offre un bon compromis en termes de taille et de résolution d'observation avec la possibilité de réaliser des études avec une bonne résolution spatiale. En combinant l'imagerie avec des analyses chimiques par spectroscopie à dispersion d'énergie aux rayons X (EDX), une étude complète des modifications morphologiques et chimiques est possible. Pour compléter la compréhension des résultats obtenus par in situ/operando SEM, de la spectroscopie d'impédance électrochimique (EIS) a été réalisée pour obtenir des informations supplémentaires du point de vue électrochimiqu
    corecore