8 research outputs found

    REFLECT : logiciel de restitution des rĂ©flectances au sol pour l’amĂ©lioration de la qualitĂ© de l'information extraite des images satellitales Ă  haute rĂ©solution spatiale

    Full text link
    Les images satellitales multispectrales, notamment celles Ă  haute rĂ©solution spatiale (plus fine que 30 m au sol), reprĂ©sentent une source d’information inestimable pour la prise de dĂ©cision dans divers domaines liĂ©s Ă  la gestion des ressources naturelles, Ă  la prĂ©servation de l’environnement ou Ă  l’amĂ©nagement et la gestion des centres urbains. Les Ă©chelles d’étude peuvent aller du local (rĂ©solutions plus fines que 5 m) Ă  des Ă©chelles rĂ©gionales (rĂ©solutions plus grossiĂšres que 5 m). Ces images caractĂ©risent la variation de la rĂ©flectance des objets dans le spectre qui est l’information clĂ© pour un grand nombre d’applications de ces donnĂ©es. Or, les mesures des capteurs satellitaux sont aussi affectĂ©es par des facteurs « parasites » liĂ©s aux conditions d’éclairement et d’observation, Ă  l’atmosphĂšre, Ă  la topographie et aux propriĂ©tĂ©s des capteurs. Deux questions nous ont prĂ©occupĂ© dans cette recherche. Quelle est la meilleure approche pour restituer les rĂ©flectances au sol Ă  partir des valeurs numĂ©riques enregistrĂ©es par les capteurs tenant compte des ces facteurs parasites ? Cette restitution est-elle la condition sine qua non pour extraire une information fiable des images en fonction des problĂ©matiques propres aux diffĂ©rents domaines d’application des images (cartographie du territoire, monitoring de l’environnement, suivi des changements du paysage, inventaires des ressources, etc.) ? Les recherches effectuĂ©es les 30 derniĂšres annĂ©es ont abouti Ă  une sĂ©rie de techniques de correction des donnĂ©es des effets des facteurs parasites dont certaines permettent de restituer les rĂ©flectances au sol. Plusieurs questions sont cependant encore en suspens et d’autres nĂ©cessitent des approfondissements afin, d’une part d’amĂ©liorer la prĂ©cision des rĂ©sultats et d’autre part, de rendre ces techniques plus versatiles en les adaptant Ă  un plus large Ă©ventail de conditions d’acquisition des donnĂ©es. Nous pouvons en mentionner quelques unes : - Comment prendre en compte des caractĂ©ristiques atmosphĂ©riques (notamment des particules d’aĂ©rosol) adaptĂ©es Ă  des conditions locales et rĂ©gionales et ne pas se fier Ă  des modĂšles par dĂ©faut qui indiquent des tendances spatiotemporelles Ă  long terme mais s’ajustent mal Ă  des observations instantanĂ©es et restreintes spatialement ? - Comment tenir compte des effets de « contamination » du signal provenant de l’objet visĂ© par le capteur par les signaux provenant des objets environnant (effet d’adjacence) ? ce phĂ©nomĂšne devient trĂšs important pour des images de rĂ©solution plus fine que 5 m; - Quels sont les effets des angles de visĂ©e des capteurs hors nadir qui sont de plus en plus prĂ©sents puisqu’ils offrent une meilleure rĂ©solution temporelle et la possibilitĂ© d’obtenir des couples d’images stĂ©rĂ©oscopiques ? - Comment augmenter l’efficacitĂ© des techniques de traitement et d’analyse automatique des images multispectrales Ă  des terrains accidentĂ©s et montagneux tenant compte des effets multiples du relief topographique sur le signal captĂ© Ă  distance ? D’autre part, malgrĂ© les nombreuses dĂ©monstrations par des chercheurs que l’information extraite des images satellitales peut ĂȘtre altĂ©rĂ©e Ă  cause des tous ces facteurs parasites, force est de constater aujourd’hui que les corrections radiomĂ©triques demeurent peu utilisĂ©es sur une base routiniĂšre tel qu’est le cas pour les corrections gĂ©omĂ©triques. Pour ces derniĂšres, les logiciels commerciaux de tĂ©lĂ©dĂ©tection possĂšdent des algorithmes versatiles, puissants et Ă  la portĂ©e des utilisateurs. Les algorithmes des corrections radiomĂ©triques, lorsqu’ils sont proposĂ©s, demeurent des boĂźtes noires peu flexibles nĂ©cessitant la plupart de temps des utilisateurs experts en la matiĂšre. Les objectifs que nous nous sommes fixĂ©s dans cette recherche sont les suivants : 1) DĂ©velopper un logiciel de restitution des rĂ©flectances au sol tenant compte des questions posĂ©es ci-haut. Ce logiciel devait ĂȘtre suffisamment modulaire pour pouvoir le bonifier, l’amĂ©liorer et l’adapter Ă  diverses problĂ©matiques d’application d’images satellitales; et 2) Appliquer ce logiciel dans diffĂ©rents contextes (urbain, agricole, forestier) et analyser les rĂ©sultats obtenus afin d’évaluer le gain en prĂ©cision de l’information extraite par des images satellitales transformĂ©es en images des rĂ©flectances au sol et par consĂ©quent la nĂ©cessitĂ© d’opĂ©rer ainsi peu importe la problĂ©matique de l’application. Ainsi, Ă  travers cette recherche, nous avons rĂ©alisĂ© un outil de restitution de la rĂ©flectance au sol (la nouvelle version du logiciel REFLECT). Ce logiciel est basĂ© sur la formulation (et les routines) du code 6S (Seconde Simulation du Signal Satellitaire dans le Spectre Solaire) et sur la mĂ©thode des cibles obscures pour l’estimation de l’épaisseur optique des aĂ©rosols (aerosol optical depth, AOD), qui est le facteur le plus difficile Ă  corriger. Des amĂ©liorations substantielles ont Ă©tĂ© apportĂ©es aux modĂšles existants. Ces amĂ©liorations concernent essentiellement les propriĂ©tĂ©s des aĂ©rosols (intĂ©gration d’un modĂšle plus rĂ©cent, amĂ©lioration de la recherche des cibles obscures pour l’estimation de l’AOD), la prise en compte de l’effet d’adjacence Ă  l’aide d’un modĂšle de rĂ©flexion spĂ©culaire, la prise en compte de la majoritĂ© des capteurs multispectraux Ă  haute rĂ©solution (Landsat TM et ETM+, tous les HR de SPOT 1 Ă  5, EO-1 ALI et ASTER) et Ă  trĂšs haute rĂ©solution (QuickBird et Ikonos) utilisĂ©s actuellement et la correction des effets topographiques l’aide d’un modĂšle qui sĂ©pare les composantes directe et diffuse du rayonnement solaire et qui s’adapte Ă©galement Ă  la canopĂ©e forestiĂšre. Les travaux de validation ont montrĂ© que la restitution de la rĂ©flectance au sol par REFLECT se fait avec une prĂ©cision de l’ordre de ±0.01 unitĂ©s de rĂ©flectance (pour les bandes spectrales du visible, PIR et MIR), mĂȘme dans le cas d’une surface Ă  topographie variable. Ce logiciel a permis de montrer, Ă  travers des simulations de rĂ©flectances apparentes Ă  quel point les facteurs parasites influant les valeurs numĂ©riques des images pouvaient modifier le signal utile qui est la rĂ©flectance au sol (erreurs de 10 Ă  plus de 50%). REFLECT a Ă©galement Ă©tĂ© utilisĂ© pour voir l’importance de l’utilisation des rĂ©flectances au sol plutĂŽt que les valeurs numĂ©riques brutes pour diverses applications courantes de la tĂ©lĂ©dĂ©tection dans les domaines des classifications, du suivi des changements, de l’agriculture et de la foresterie. Dans la majoritĂ© des applications (suivi des changements par images multi-dates, utilisation d’indices de vĂ©gĂ©tation, estimation de paramĂštres biophysiques, 
), la correction des images est une opĂ©ration cruciale pour obtenir des rĂ©sultats fiables. D’un point de vue informatique, le logiciel REFLECT se prĂ©sente comme une sĂ©rie de menus simples d’utilisation correspondant aux diffĂ©rentes Ă©tapes de saisie des intrants de la scĂšne, calcul des transmittances gazeuses, estimation de l’AOD par la mĂ©thode des cibles obscures et enfin, l’application des corrections radiomĂ©triques Ă  l’image, notamment par l’option rapide qui permet de traiter une image de 5000 par 5000 pixels en 15 minutes environ. Cette recherche ouvre une sĂ©rie de pistes pour d’autres amĂ©liorations des modĂšles et mĂ©thodes liĂ©s au domaine des corrections radiomĂ©triques, notamment en ce qui concerne l’intĂ©gration de la FDRB (fonction de distribution de la rĂ©flectance bidirectionnelle) dans la formulation, la prise en compte des nuages translucides Ă  l’aide de la modĂ©lisation de la diffusion non sĂ©lective et l’automatisation de la mĂ©thode des pentes Ă©quivalentes proposĂ©e pour les corrections topographiques.Multi-spectral satellite imagery, especially at high spatial resolution (finer than 30 m on the ground), represents an invaluable source of information for decision making in various domains in connection with natural resources management, environment preservation or urban planning and management. The mapping scales may range from local (finer resolution than 5 m) to regional (resolution coarser than 5m). The images are characterized by objects reflectance in the electromagnetic spectrum witch represents the key information in many applications. However, satellite sensor measurements are also affected by parasite input due to illumination and observation conditions, to the atmosphere, to topography and to sensor properties. Two questions have oriented this research. What is the best approach to retrieve surface reflectance with the measured values while taking into account these parasite factors? Is this retrieval a sine qua non condition for reliable image information extraction for the diverse domains of application for the images (mapping, environmental monitoring, landscape change detection, resources inventory, etc.)? Researches performed in the past 30 years have yielded a series of techniques to correct the parasite factors among which some allow to retrieve ground reflectance. Some questions are still unanswered and others require still more scrutiny to increase precision and to make these methods more versatile by adapting them to larger variety of data acquisition conditions. A few examples may be mentioned: - How to take into account atmospheric characteristics (particularly of aerosols) adapted to local and regional conditions instead of relying on default models indicating long term spatial-temporal trends that are hard to adjust to spatially restricted instantaneous observations; - How to remove noise introduced by surrounding objects. This adjacency effect phenomenon is particularly important for image resolutions smaller than 5m; - What is the effect of the viewing angle of the sensors that are increasingly aiming off-nadir, a choice imposed by the imperatives of a better temporal resolution or the acquisition of stereo pairs? - How to increase the performances of automatic multi-spectral image processing and analysis techniques in mountainous high relief area by taking into account the multiple effects of topography on the remotely sensed signal? Despite many demonstrations by researchers that information extracted from remote sensing may be altered due to the parasite factors, we are forced to note that nowadays radiometric corrections are still seldom applied, unlike geometric corrections for which commercial software possess powerful and versatile user-friendly algorithms. Radiometric correction algorithms, when available, are hard to adapt black boxes and mostly require experts to operate them. The goals we have delineated for this research are as follow: 1) Develop software to retrieve ground reflectance while taking into account the aspects mentioned earlier. This software had to be modular enough to allow improvement and adaptation to diverse remote sensing application problems; and 2) Apply this software in various context (urban, agricultural, forest) and analyse results to evaluate the accuracy gain of extracted information from remote sensing imagery transformed in ground reflectance images to demonstrate the necessity of operating in this way, whatever the type of application. During this research, we have developed a tool to retrieve ground reflectance (the new version of the REFLECT software). This software is based on the formulas (and routines) of the 6S code (Second Simulation of Satellite Signal in the Solar Spectrum) and on the dark targets method to estimated the aerosol optical thickness, representing the most difficult factor to correct. Substantial improvements have been made to the existing models. These improvements essentially concern the aerosols properties (integration of a more recent model, improvement of the dark targets selection to estimate the AOD), the adjacency effect, the adaptation to most used high resolution (Landsat TM and ETM+, all HR SPOT 1 to 5, EO-1 ALI and ASTER) and very high resolution (QuickBird et Ikonos) sensors and the correction of topographic effects with a model that separate direct and diffuse solar radiation components and the adaptation of this model to forest canopy. Validation has shown that ground reflectance estimation with REFLECT is performed with an accuracy of approximately ±0.01 in reflectance units (for in the visible, near-infrared and middle-infrared spectral bands) even for a surface with varying topography. This software has allowed demonstrating, through apparent reflectance simulations, how much parasite factors influencing numerical values of the images may alter the ground reflectance (errors ranging from 10 to 50%). REFLECT has also been used to examine the usefulness of ground reflectance instead of raw data for various common remote sensing applications in domains such as classification, change detection, agriculture and forestry. In most applications (multi-temporal change monitoring, use of vegetation indices, biophysical parameters estimation, etc.) image correction is a crucial step to obtain reliable results. From the computer environment standpoint, REFLECT is organized as a series of menus, corresponding to different steps of: input parameters introducing, gas transmittances calculation, AOD estimation, and finally image correction application, with the possibility of using the fast option witch process an image of 5000 by 5000 pixels in approximately 15 minutes. This research opens many possible pathways for improving methods and models in the realm of radiometric corrections of remotely sensed images. In particular, these include BRDF integration in the formulation, cirrus clouds correction using non selective scattering modelling and improving of the equivalent slopes topographic correction method

    Deep Learning-Based Classification of Large-Scale Airborne LiDAR Point Cloud

    No full text
    Airborne LiDAR data allow the precise modeling of topography and are used in multiple contexts. To facilitate further analysis, the point cloud classification process allows the assignment of a class, object or feature, to each point. This research uses ConvPoint, a deep learning method, to perform airborne point cloud classification at scale, in rural and urban contexts. Specifically, our experiments are located near Montreal (QC) and Saint-Jean (NB) and our approach is designed to classify five classes; we used “Building”, “Ground”, “Water”, “Low Vegetation” and “Mid-High Vegetation”. Experimenting with different configurations, we achieved excellent Intersection-over-Union results for the “Mid-High Vegetation” (93%) and “Building” (86%) classes on both datasets and provide insights to improve processing times as well as accuracy

    Synthetic Data for Sentinel-2 Semantic Segmentation

    No full text
    Satellite observations provide critical data for a myriad of applications, but automated information extraction from such vast datasets remains challenging. While artificial intelligence (AI), particularly deep learning methods, offers promising solutions for land cover classification, it often requires massive amounts of accurate, error-free annotations. This paper introduces a novel approach to generate a segmentation task dataset with minimal human intervention, thus significantly reducing annotation time and potential human errors. ‘Samples’ extracted from actual imagery were utilized to construct synthetic composite images, representing 10 segmentation classes. A DeepResUNet was solely trained on this synthesized dataset, eliminating the need for further fine-tuning. Preliminary findings demonstrate impressive generalization abilities on real data across various regions of Quebec. We endeavored to conduct a quantitative assessment without reliance on manually annotated data, and the results appear to be comparable, if not superior, to models trained on genuine datasets

    Ground Reflectance Retrieval on Horizontal and Inclined Terrains Using the Software Package REFLECT

    No full text
    This paper presents the software package REFLECT for the retrieval of ground reflectance from high and very-high resolution multispectral satellite images. The computation of atmospheric parameters is based on the 6S (Second Simulation of the Satellite Signal in the Solar Spectrum) routines. Aerosol optical properties are calculated using the OPAC (Optical Properties of Aerosols and Clouds) model, while aerosol optical depth is estimated using the dark target method. A new approach is proposed for adjacency effect correction. Topographic effects were also taken into account, and a new model was developed for forest canopies. Validation has shown that ground reflectance estimation with REFLECT is performed with an accuracy of approximately ±0.01 in reflectance units (for the visible, near-infrared, and mid-infrared spectral bands), even for surfaces with varying topography. The validation of the software was performed through many tests. These tests involve the correction of the effects that are associated with sensor calibration, irradiance, and viewing conditions, atmospheric conditions (aerosol optical depth AOD and water vapour), adjacency, and topographic conditions

    Deep Learning-Based Emulation of Radiative Transfer Models for Top-of-Atmosphere BRDF Modelling Using Sentinel-3 OLCI

    No full text
    The Bidirectional Reflectance Distribution Function (BRDF) defines the anisotropy of surface reflectance and plays a fundamental role in many remote sensing applications. This study proposes a new machine learning-based model for characterizing the BRDF. The model integrates the capability of Radiative Transfer Models (RTMs) to generate simulated remote sensing data with the power of deep neural networks to emulate, learn and approximate the complex pattern of physical RTMs for BRDF modeling. To implement this idea, we used a one-dimensional convolutional neural network (1D-CNN) trained with a dataset simulated using two widely used RTMs: PROSAIL and 6S. The proposed 1D-CNN consists of convolutional, max poling, and dropout layers that collaborate to establish a more efficient relationship between the input and output variables from the coupled PROSAIL and 6S yielding a robust, fast, and accurate BRDF model. We evaluated the proposed approach performance using a collection of an independent testing dataset. The results indicated that the proposed framework for BRDF modeling performed well at four simulated Sentinel-3 OLCI bands, including Oa04 (blue), Oa06 (green), Oa08 (red), and Oa17 (NIR), with a mean correlation coefficient of around 0.97, and RMSE around 0.003 and an average relative percentage error of under 4%. Furthermore, to assess the performance of the developed network in the real domain, a collection of multi-temporals OLCI real data was used. The results indicated that the proposed framework has a good performance in the real domain with a coefficient correlation (R2), 0.88, 0.76, 0.7527, and 0.7560 respectively for the blue, green, red, and NIR bands

    Deep Learning-Based Emulation of Radiative Transfer Models for Top-of-Atmosphere BRDF Modelling Using Sentinel-3 OLCI

    No full text
    The Bidirectional Reflectance Distribution Function (BRDF) defines the anisotropy of surface reflectance and plays a fundamental role in many remote sensing applications. This study proposes a new machine learning-based model for characterizing the BRDF. The model integrates the capability of Radiative Transfer Models (RTMs) to generate simulated remote sensing data with the power of deep neural networks to emulate, learn and approximate the complex pattern of physical RTMs for BRDF modeling. To implement this idea, we used a one-dimensional convolutional neural network (1D-CNN) trained with a dataset simulated using two widely used RTMs: PROSAIL and 6S. The proposed 1D-CNN consists of convolutional, max poling, and dropout layers that collaborate to establish a more efficient relationship between the input and output variables from the coupled PROSAIL and 6S yielding a robust, fast, and accurate BRDF model. We evaluated the proposed approach performance using a collection of an independent testing dataset. The results indicated that the proposed framework for BRDF modeling performed well at four simulated Sentinel-3 OLCI bands, including Oa04 (blue), Oa06 (green), Oa08 (red), and Oa17 (NIR), with a mean correlation coefficient of around 0.97, and RMSE around 0.003 and an average relative percentage error of under 4%. Furthermore, to assess the performance of the developed network in the real domain, a collection of multi-temporals OLCI real data was used. The results indicated that the proposed framework has a good performance in the real domain with a coefficient correlation (R2), 0.88, 0.76, 0.7527, and 0.7560 respectively for the blue, green, red, and NIR bands

    Economic Benefit of Coastal ‘Blue Carbon’ Stocks in Moroccan Lagoon Ecosystem: A Case Study From Moulay Bousselham lagoon

    No full text
    Abstract Land degradation is a problem that increasingly affects large areas of territories and affects various ecosystem services provided by coastal wetlands. These marine ecosystems provide valuable benefits to the environment and to humans, including services such as coastal blue carbon sequestration (CBCS) the economic value of which is still poorly understood. This paper investigated land use/cover (LULC) changes in Moulay Bousselham lagoon (MBL) from 1971 to 2020 and their effects on CBCS variation. The transformation of LULC and their cumulative conversions in coastal wetlands were studied during the 1971-2010 and 2010-2020 periods based on LULC data. Then the InVEST model was used to quantify the carbon storage provided by coastal ecosystems in response to LULC changes. The results show that the overall area of strictly wetland habitats in the MBL has decreased by 8.83% since 1971. There were 94 types of LULC transformation over 1971-2020, with significant wetland losses marked by the conversion of wet lawn and juncus meadow to cropland. Using recent estimates of social cost of carbon (SCC) and CO 2 European Emission Allowances (EUA), the monetary value of CBCS service was calculated over the entire lagoon during the study period to reach gains between 371,053 and 3,803,295US/yandlossesbetween−10,127and−103,806US/y and losses between -10,127 and -103,806US/y. If current trends of habitat loss continue, the capacity of coastal habitats to sequester and store CO 2 will be significantly reduced. The study shows that revenues from CBCS service can accelerate the implementation of wetland rehabilitation strategies that have a positive impact on climate regulation

    Corn response to nitrogen is influenced by soil texture and weather

    Get PDF
    Citation: Tremblay, Nicolas, Yacine M. Bouroubi, Carl BĂ©lec, Robert William Mullen, Newell R. Kitchen, Wade E. Thomason, Steve Ebelhar, et al. “Corn Response to Nitrogen Is Influenced by Soil Texture and Weather.” Agronomy Journal 104, no. 6 (2012): 1658–71. https://doi.org/10.2134/agronj2012.0184.Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series of experiments to explain the sources of heterogeneity. In this study, the technique was used to examine the influence of soil and weather parameters on N responses of corn (Zea mays L.) across 51 studies involving the same N rate treatments which were carried out in a diversity of North American locations between 2006 and 2009. Results showed that corn response to added N was significantly greater in fine-textured soils than in medium-textured soils. Abundant and well-distributed rainfall and, to a lesser extent, accumulated corn heat units enhanced N response. Corn yields increased by a factor of 1.6 (over the unfertilized control) in medium-textured soils and 2.7 in fine-textured soils at high N rates. Subgroup analyses were performed on the fine-textured soil class based on weather parameters. Rainfall patterns had an important effect on N response in this soil texture class, with yields being increased 4.5-fold by in-season N fertilization under conditions of “abundant and well-distributed rainfall.” These findings could be useful for developing N fertilization algorithms that would allow for N application at optimal rates taking into account rainfall pattern and soil texture, which would lead to improved crop profitability and reduced environmental impacts
    corecore