26 research outputs found

    Structure of diffusion layers formed at liquid aluminum alloy-steel contact boundary

    Full text link
    The microstructure and composition of diffusion layers that arise upon the spread of the liquid aluminum alloys AL5, AL9, AL852, and A7075 over the St3 steel has been investigated using optical and electron microscopy. The thermophysical conditions of the interaction of the melt with the substrate under which at the boundary of the substrate the plastic transition layer of iron-based solid solution improving quality of the coating is formed have been determined. © 2013 Pleiades Publishing, Ltd

    Origin and Properties of the Gap in the Half-Ferromagnetic Heusler Alloys

    Full text link
    We study the origin of the gap and the role of chemical composition in the half-ferromagnetic Heusler alloys using the full-potential screened KKR method. In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap. Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are semiconductors, but when Z_t > 18 antibonding states are also populated, thus the paramagnetic phase becomes unstable and the half-ferromagnetic one is stabilized. The minority occupied bands accommodate a total of nine electrons and the total magnetic moment per unit cell in mu_B is just the difference between Z_t and 2×92 \times 9. While the substitution of the transition metal atoms may preserve the half-ferromagnetic character, substituting the spsp atom results in a practically rigid shift of the bands and the loss of half-metallicity. Finally we show that expanding or contracting the lattice parameter by 2% preserves the minority-spin gap.Comment: 11 pages, 7 figures New figures, revised tex

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Nonquasiparticle states in half-metallic ferromagnets

    Full text link
    Anomalous magnetic and electronic properties of the half-metallic ferromagnets (HMF) have been discussed. The general conception of the HMF electronic structure which take into account the most important correlation effects from electron-magnon interactions, in particular, the spin-polaron effects, is presented. Special attention is paid to the so called non-quasiparticle (NQP) or incoherent states which are present in the gap near the Fermi level and can give considerable contributions to thermodynamic and transport properties. Prospects of experimental observation of the NQP states in core-level spectroscopy is discussed. Special features of transport properties of the HMF which are connected with the absence of one-magnon spin-flip scattering processes are investigated. The temperature and magnetic field dependences of resistivity in various regimes are calculated. It is shown that the NQP states can give a dominate contribution to the temperature dependence of the impurity-induced resistivity and in the tunnel junction conductivity. First principle calculations of the NQP-states for the prototype half-metallic material NiMnSb within the local-density approximation plus dynamical mean field theory (LDA+DMFT) are presented.Comment: 27 pages, 9 figures, Proceedings of Berlin/Wandlitz workshop 2004; Local-Moment Ferromagnets. Unique Properties for Moder Applications, ed. M. Donath, W.Nolting, Springer, Berlin, 200

    Structure of Fe-Cu-C alloys produced by contact alloying

    No full text
    The electron-microscopic analysis has been carried out in the Center of Electron Microscopy of the Institute of Metal Physics, Ural Division, Russian Academy of Sciences.A qualitative and quantitative analysis of the structure of Fe-Cu-C alloys obtained as a result of interaction of Fe-Cu melts with graphite upon wetting has been carried out by means of optical and electron microscopy. Based on the investigations performed, it has been shown that the technique of contact alloying allows one to obtain multilayered composite materials

    Effect of Homogenizing Heat Treatment of Liquid Aluminum-Copper Alloys on the Structure of Rapidly Crystallized Specimens

    No full text
    Centrifugal casting into a massive slot chill mold was used to prepare two series of specimens of alloys of the Al - Cu system, containing from 10 to 32.2 at.% Cu. The first series was fabricated without a homogenizing heat treatment of the melt, while the second series was fabricated with heating of the melt to 1400A degrees C. Both kinds of specimens were cast at the same temperature in order to provide for the same cooling rate of about 10(4) K/sec. The structures, phase compositions and microhardnesses of the structural components are compared. It is established that the homogenizing heat treatment changes the kinetics of crystallization and, hence, the proportion of phases in the alloy structure and the copper content in them

    Effect of Homogenizing Heat Treatment of Liquid Aluminum-Copper Alloys on the Structure of Rapidly Crystallized Specimens

    No full text
    Centrifugal casting into a massive slot chill mold was used to prepare two series of specimens of alloys of the Al - Cu system, containing from 10 to 32.2 at.% Cu. The first series was fabricated without a homogenizing heat treatment of the melt, while the second series was fabricated with heating of the melt to 1400A degrees C. Both kinds of specimens were cast at the same temperature in order to provide for the same cooling rate of about 10(4) K/sec. The structures, phase compositions and microhardnesses of the structural components are compared. It is established that the homogenizing heat treatment changes the kinetics of crystallization and, hence, the proportion of phases in the alloy structure and the copper content in them

    Structure of diffusion layers that are formed upon spreading of Al-Si melts over the surface of St3 steel

    No full text
    This work was performed according to the plan of the Russian Academy of Sciences (theme no. 01.2.00613394, cipher "Impul's") and was supported in part by the Program of the Interdisciplinary Basic Research of the Ural Division of the Russian Academy of Sciences (project no. 09-M-23-2004) and by the Russia Foundation for Basic Research, project no. 09-03-12152 ofi_m.Optical and electron microscopy have been used to study microstructure of diffusion layers that are formed upon spreading of melts of the Al-12%Si and Al-20%Si alloys on steel St3
    corecore