640 research outputs found
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Observation of CR Anisotropy with ARGO-YBJ
The measurement of the anisotropies of cosmic ray arrival direction provides
important informations on the propagation mechanisms and on the identification
of their sources. In this paper we report the observation of anisotropy regions
at different angular scales. In particular, the observation of a possible
anisotropy on scales between 10 and 30
suggests the presence of unknown features of the magnetic fields the charged
cosmic rays propagate through, as well as potential contributions of nearby
sources to the total flux of cosmic rays. Evidence of new weaker few-degree
excesses throughout the sky region R.A. is
reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich,
German
Genome-wide analysis of the nucleotide binding site leucine-rich repeat genes of four orchids revealed extremely low numbers of disease resistance genes
Orchids are one of the most diverse flowering plant families, yet possibly maintain the smallest number of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) type plant resistance (R) genes among the angiosperms. In this study, a genome-wide search in four orchid taxa identified 186 NBS-LRR genes. Furthermore, 214 NBS-LRR genes were identified from seven orchid transcriptomes. A phylogenetic analysis recovered 30 ancestral lineages (29 CNL and one RNL), far fewer than other angiosperm families. From the genetics aspect, the relatively low number of ancestral R genes is unlikely to explain the low number of R genes in orchids alone, as historical gene loss and scarce gene duplication has continuously occurred, which also contributes to the low number of R genes. Due to recent sharp expansions, Phalaenopsis equestris and Dendrobium catenatum having 52 and 115 genes, respectively, and exhibited an "early shrinking to recent expanding" evolutionary pattern, while Gastrodia elata and Apostasia shenzhenica both exhibit a "consistently shrinking" evolutionary pattern and have retained only five and 14 NBS-LRR genes, respectively. RNL genes remain in extremely low numbers with only one or two copies per genome. Notably, all of the orchid RNL genes belong to the ADR1 lineage. A separate lineage, NRG1, was entirely absent and was likely lost in the common ancestor of all monocots. All of the TNL genes were absent as well, coincident with the RNL NRG1 lineage, which supports the previously proposed notion that a potential functional association between the TNL and RNL NRG1 genes
Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment
Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment in the multi-TeV energy region with high statistical significance (55 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system, we have studied separately the effect of the
geomagnetic field and of the detector point spread function on the observed shadow. The angular resolution as a function of the particle multiplicity and the pointing accuracy have been obtained. The primary energy of detected showers has been estimated by measuring the westward displacement as a function of the particle multiplicity, thus calibrating the relation between shower size and cosmic ray energy. The stability of the detector on a monthly basis has been checked by monitoring the position and the deficit of the Moon shadow. Finally, we have studied with high statistical accuracy the shadowing effect in the ''day/night’’ time looking for possible effect induced by the solar wind
Highlights from the ARGO-YBJ experiment
The ARGO-YBJ experiment at YangBaJing in Tibet (4300 m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few significant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton/proton flux ratio, on the large-scale cosmic-ray anisotropy and on the proton–air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
Both Positive and Negative Selection Pressures Contribute to the Polymorphism Pattern of the Duplicated Human CYP21A2 Gene.
The human steroid 21-hydroxylase gene (CYP21A2) participates in cortisol and aldosterone biosynthesis, and resides together with its paralogous (duplicated) pseudogene in a multiallelic copy number variation (CNV), called RCCX CNV. Concerted evolution caused by non-allelic gene conversion has been described in great ape CYP21 genes, and the same conversion activity is responsible for a serious genetic disorder of CYP21A2, congenital adrenal hyperplasia (CAH). In the current study, 33 CYP21A2 haplotype variants encoding 6 protein variants were determined from a European population. CYP21A2 was shown to be one of the most diverse human genes (HHe=0.949), but the diversity of intron 2 was greater still. Contrary to previous findings, the evolution of intron 2 did not follow concerted evolution, although the remaining part of the gene did. Fixed sites (different fixed alleles of sites in human CYP21 paralogues) significantly accumulated in intron 2, indicating that the excess of fixed sites was connected to the lack of effective non-allelic conversion and concerted evolution. Furthermore, positive selection was presumably focused on intron 2, and possibly associated with the previous genetic features. However, the positive selection detected by several neutrality tests was discerned along the whole gene. In addition, the clear signature of negative selection was observed in the coding sequence. The maintenance of the CYP21 enzyme function is critical, and could lead to negative selection, whereas the presumed gene regulation altering steroid hormone levels via intron 2 might help fast adaptation, which broadly characterizes the genes of human CNVs responding to the environment
- …
