40 research outputs found
Adatom incorporation and step crossing at the edges of 2D nanoislands
Adatom incorporation into the ``faceted'' steps bordering the 2D nanoislands
is analyzed. The step permeability and incorporation coefficients are derived
for some typical growth situations. It is shown that the step consisting of
equivalent straight segments can be permeable even in the case of fast egde
migration if there exist factors delaying creation of new kinks. The step
consisting of alternating rough and straight segments may be permeable if there
is no adatom transport between neighboring segments through the corner
diffusion.Comment: 3 pages, one figur
Structural, magnetic and electrical properties of single crystalline La_(1-x)Sr_xMnO_3 for 0.4 < x < 0.85
We report on structural, magnetic and electrical properties of Sr-doped
LaMnO_3 single crystals for doping levels 0.4 < x < 0.85. The complex
structural and magnetic phase diagram can only be explained assuming
significant contributions from the orbital degrees of freedom. Close to x = 0.6
a ferromagnetic metal is followed by an antiferromagnetic metallic phase below
200 K. This antiferromagnetic metallic phase exists in a monoclinic
crystallographic structure. Following theoretical predictions this metallic
antiferromagnet is expected to reveal an (x^2-y^2)-type orbital order. For
higher Sr concentrations an antiferromagnetic insulator is established below
room temperature.Comment: 8 pages, 7 figure
Studying the formation of Si (100) stepped surface in molecular-beam epitaxy
Experimental studies of the formation of a stepped surface structure during molecular-beam epitaxy of silicon on a Si (100) substrate have been carried out in wide ranges of variation of the substrate temperature and silicon growth rate. The conditions of the transition from a two-domain structure of the Si (100) surface to a single-domain structure associated with the formation of diatomic steps are determined using reflection high-energy electron diffraction. It is shown that the effect of an increase in the substrate temperature on the transition to a single-domain structure is non-monotonic: a single-domain surface forms in the region of relatively low temperatures, whereas a two-domain surface forms at high temperatures. The transition to a single-domain structure during the experiment is possible only, if the silicon growth rate is increased above a certain minimum value
Studying the formation of Si (100) stepped surface in molecular-beam epitaxy
Experimental studies of the formation of a stepped surface structure during molecular-beam epitaxy of silicon on a Si (100) substrate have been carried out in wide ranges of variation of the substrate temperature and silicon growth rate. The conditions of the transition from a two-domain structure of the Si (100) surface to a single-domain structure associated with the formation of diatomic steps are determined using reflection high-energy electron diffraction. It is shown that the effect of an increase in the substrate temperature on the transition to a single-domain structure is non-monotonic: a single-domain surface forms in the region of relatively low temperatures, whereas a two-domain surface forms at high temperatures. The transition to a single-domain structure during the experiment is possible only, if the silicon growth rate is increased above a certain minimum value