526 research outputs found
Cdk5 Phosphorylates Dopamine D2 Receptor and Attenuates Downstream Signaling
The dopamine D2 receptor (DRD2) is a key receptor that mediates dopamine-associated brain functions such as mood, reward, and emotion. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase whose function has been implicated in the brain reward circuit. In this study, we revealed that the serine 321 residue (S321) in the third intracellular loop of DRD2 (D2i3) is a novel regulatory site of Cdk5. Cdk5-dependent phosphorylation of S321 in the D2i3 was observed in in vitro and cell culture systems. We further observed that the phosphorylation of S321 impaired the agonist-stimulated surface expression of DRD2 and decreased G protein coupling to DRD2. Moreover, the downstream cAMP pathway was affected in the heterologous system and in primary neuronal cultures from p35 knockout embryos likely due to the reduced inhibitory activity of DRD2. These results indicate that Cdk5-mediated phosphorylation of S321 inhibits DRD2 function, providing a novel regulatory mechanism for dopamine signaling.X111111sciescopu
Severity of Nonalcoholic Fatty Liver Disease is Associated with Development of Metabolic Syndrome: Results of a 5-Year Cohort Study
Aims: Nonalcoholic fatty liver disease (NAFLD) is considered to be a hepatic manifestation of metabolic syndrome (MS).
However, a few studies have examined the effect of NAFLD on the development of MS. We evaluated the relationship
between the development of MS and clinical severity of NAFLD according to alanine aminotransferase (ALT) levels.
Methods: A retrospective cohort study was conducted. Participants who underwent abdominal ultrasonography and blood
samplings for health check-ups both in 2005 and 2010 were recruited. NAFLD was diagnosed if a person showed fatty liver
on ultrasonography without significant alcohol consumption. Subjects with MS at baseline were excluded.
Results: A total of 2,728 subjects met the inclusion criteria. Fatty liver (FL) with normal ALT was found in 369 (13.5%)
subjects and FL with elevated ALT in 328 (12.0%). During 5 years of follow up, 582 (21.3%) incident cases of MS developed
between 2005 and 2010. The incidence of MS was higher in patients with NAFLD compared to control group (41.2%
in FL with elevated ALT, 34.7% in FL with normal ALT and 15.7% in control, p<0.001). Multivariate analysis showed that
odds ratio (OR) and 95% confidence interval (CI) for MS increased according to the severity of NAFLD [OR (95% CI),
1.29 (0.97−1.71) in FL with normal ALT and 1.54 (1.18−1.33) in FL with elevated ALT, p=0.01].
Conclusions: We have demonstrated that development of MS is significantly increased according to the clinical severity of
NAFLD. These findings have implications in the clinical availability of NAFLD as a predictor of MS
Synergistic effects of longitudinal amyloid and vascular changes on lobar microbleeds
OBJECTIVE: To determine whether amyloid and hypertensive cerebral small vessel disease (hCSVD) changes synergistically affect the progression of lobar microbleeds in patients with subcortical vascular mild cognitive impairment (svMCI).
METHODS: Among 72 patients with svMCI who underwent brain MRI and [11C] Pittsburgh compound B (PiB)–PET, 52 (72.2%) completed the third year of follow-up. These patients were evaluated by annual neuropsychological testing, brain MRI, and follow-up PiB-PET.
RESULTS: Over 3 years, 31 of 52 patients (59.6%) had incident cerebral microbleeds (CMBs) in the lobar and deep regions. Both baseline and longitudinal changes in lacune numbers were associated with increased numbers of lobar and deep microbleeds, while baseline and longitudinal changes in PiB uptake ratio were associated only with the progression of lobar microbleeds, especially in the temporal, parietal, and occipital areas. Regional white matter hyperintensity severity was also associated with regional lobar CMBs in the parietal and occipital regions. There were interactive effects between baseline and longitudinal lacune number and PiB retention on lobar microbleed progression. Increased lobar, but not deep, CMBs were associated with decreased scores in the digit span backward task and Rey-Osterrieth Complex Figure Test.
CONCLUSIONS: Our findings suggest that amyloid-related pathology and hCSVD have synergistic effects on the progression of lobar microbleeds, providing new clinical insight into the interaction between amyloid burden and hCSVD on CMB progression and cognitive decline with implications for developing effective prevention strategies
Distribution of Capillary Transit Times in Isolated Lungs of Oxygen-Tolerant Rats
Rats pre-exposed to 85% O2 for 5–7 days tolerate the otherwise lethal effects of 100% O2. The objective was to evaluate the effect of rat exposure to 85% O2 for 7 days on lung capillary mean transit time (t¯c) and distribution of capillary transit times (h c(t)). This information is important for subsequent evaluation of the effect of this hyperoxia model on the redox metabolic functions of the pulmonary capillary endothelium. The venous concentration vs. time outflow curves of fluorescein isothiocyanate labeled dextran (FITC-dex), an intravascular indicator, and coenzyme Q1 hydroquinone (CoQ1H2), a compound which rapidly equilibrates between blood and tissue on passage through the pulmonary circulation, were measured following their bolus injection into the pulmonary artery of isolated perfused lungs from rats exposed to room air (normoxic) or 85% O2 for 7 days (hyperoxic). The moments (mean transit time and variance) of the measured FITC-dex and CoQ1H2 outflow curves were determined for each lung, and were then used in a mathematical model [Audi et al. J. Appl. Physiol. 77: 332–351, 1994] to estimate t¯c and the relative dispersion (RDc) of h c(t). Data analysis reveals that exposure to hyperoxia decreases lung t¯c by 42% and increases RDc, a measure h c(t) heterogeneity, by 40%
Recommended from our members
Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion.
Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release. These valves operate through an electrochemical mechanism of geometrically accelerated corrosion induced by passage of electrical current from a wireless, bioresorbable power-harvesting unit. Evaluations in cell cultures demonstrate the efficacy of this technology for the treatment of cancerous tissues by release of the drug doxorubicin. Complete in vivo studies of platforms with multiple, independently controlled release events in live-animal models illustrate capabilities for control of blood glucose levels by timed delivery of insulin
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
A Study of D0 --> K0(S) K0(S) X Decay Channels
Using data from the FOCUS experiment (FNAL-E831), we report on the decay of
mesons into final states containing more than one . We present
evidence for two Cabibbo favored decay modes, and
, and measure their combined branching fraction
relative to to be = 0.0106
0.0019 0.0010. Further, we report new measurements of
=
0.0179 0.0027 0.0026, = 0.0144 0.0032 0.0016,
and = 0.0208 0.0035 0.0021 where the first error is
statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte
Measurement of the Relative Branching Fraction of to Charged and Neutral B-Meson Pairs
We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to
determine the production ratio of charged to neutral B-meson pairs produced at
the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ ->
J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to
extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) ->
B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that
f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- =
0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty
apply to all exclusive B-meson branching fractions measured at the Y(4S)
resonance.Comment: 11 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
First Observation of the Decays and B^{0}\to D^{*-}p\bar{n}$
We report the first observation of exclusive decays of the type B to D^* N
anti-N X, where N is a nucleon. Using a sample of 9.7 times 10^{6} B-Bbar pairs
collected with the CLEO detector operating at the Cornell Electron Storage
Ring, we measure the branching fractions B(B^0 \to D^{*-} proton antiproton
\pi^+) = ({6.5}^{+1.3}_{-1.2} +- 1.0) \times 10^{-4} and B(B^0 \to D^{*-}
proton antineutron) = ({14.5}^{+3.4}_{-3.0} +- 2.7) times 10^{-4}. Antineutrons
are identified by their annihilation in the CsI electromagnetic calorimeter.Comment: 9 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
- …