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Abstract: 

Rats pre-exposed to 85% O2 for 5–7 days tolerate the otherwise lethal effects 

of 100% O2. The objective was to evaluate the effect of rat exposure to 85% 

O2 for 7 days on lung capillary mean transit time (t ̄ c) and distribution of 

capillary transit times (hc(t)). This information is important for subsequent 

evaluation of the effect of this hyperoxia model on the redox metabolic 

functions of the pulmonary capillary endothelium. The venous concentration 

vs. time outflow curves of fluorescein isothiocyanate labeled dextran (FITC-

dex), an intravascular indicator, and coenzyme Q1 hydroquinone (CoQ1H2), a 

compound which rapidly equilibrates between blood and tissue on passage 

through the pulmonary circulation, were measured following their bolus 

injection into the pulmonary artery of isolated perfused lungs from rats 

exposed to room air (normoxic) or 85% O2 for 7 days (hyperoxic). The 

moments (mean transit time and variance) of the measured FITC-dex and 

CoQ1H2 outflow curves were determined for each lung, and were then used in 

a mathematical model [Audi et al. J. Appl. Physiol. 77: 332–351, 1994] to 
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estimate t ̄ c and the relative dispersion (RDc) of hc(t). Data analysis reveals 

that exposure to hyperoxia decreases lung t̄ c by 42% and increases RDc, a 

measure hc(t) heterogeneity, by 40%.  

Keywords: Perfusion heterogeneity, Hyperoxia, Coenzyme Q1, Multiple 

indicator dilution, Flow-limited indicators, Angiotensin converting enzyme. 

INTRODUCTION 

The most common initial treatment of hypoxemia in adults with 

significant lung (e.g., acute respiratory distress syndrome, pneumonia) 

or heart disease and premature infants with respiratory distress 

syndrome is oxygen (O2) therapy (normobaric hyperoxia).14,38,49 

However, exposure to high O2 concentrations (>50%) for prolonged 

periods is toxic, particularly to the lungs.15,23,27,28,55 Although the 

mechanisms leading up to pulmonary hyperoxic injury are not fully 

understood, it is widely believed that the deleterious effects of high O2 

are the result of increased formation of reactive oxygen species (ROS), 

which at high concentrations cause various cytotoxic 

effects.26,29,30,34,37,40,54 Presently, there are no known effective ways to 

mitigate the toxic side effects of O2 therapy. 

The rat model of hyperoxic lung injury mimics several aspects of 

lung O2 toxicity observed clinically. When adult rats are exposed to 

100% O2 environment, they die within 60–72 h of lung injury.21,22 

However, if adult rats are exposed to sublethal 85% O2 environment 

for 5–7 days, they acquire tolerance to 100% O2 in that if transferred 

to 100% O2 environment they survive for prolonged periods.3,21,28,52 

This tolerance is not observed in other rodent species, but a similar 

tolerance occurs in humans.19,23 Elucidating the factors that contribute 

to this tolerance has the potential to further our understanding of the 

mechanisms involved in lung O2 toxicity and for identifying potential 

therapeutic targets for mitigating the toxic side effects of O2 

therapy.3,21,23,28,52 

Studies by Crapo et al. provide a detailed description of 

histologic and morphometric changes in lungs of rats exposed to 85% 

O2 for up to 14 days.21,22 For the first 72 h of exposure, signs of 

histologic and/or morphometric changes are undetectable.21,22 By 5 

days, there is ~30% loss in capillary endothelial cells and cell surface, 

infiltration of phagocytic leukocytes and other cell types, and an 
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increase in the thickness of air–blood barrier. By 7 days, inflammation 

is still evident and the lungs have lost half of the capillary endothelial 

cells, but pleural effusion and respiratory function impairment have 

substantially subsided. Capillary endothelial cells that survive 7 days at 

85% O2 experience significant morphometric changes including 

hypertrophy (76%), with no further loss of these hypertrophied 

endothelial cells occurring between 7 and 14 days of exposure.21,22 

These studies reveal that the pulmonary capillary endothelium is a 

primary target of lung O2 toxicity, and suggest that biochemical 

changes in hypertrophied capillary endothelial cells are potentially 

important to the acquired tolerance to 100% O2. 

Previous studies have demonstrated hyperoxia-induced changes 

in the activities of pro- and anti-oxidant redox enzymes, 

predominantly in lung tissue homogenates, and have suggested that 

redox enzymes, among other factors, play a role in rat tolerance to 

100% O2 induced by pre-exposure to 85% O2 for 5–7 

days.3,21,23,28,35,39,52 However, the results of these in vitro studies do not 

necessarily predict hyperoxia-induced changes in the activities of 

redox enzymes in an intact lung.3,5 This is because potential changes 

in key aspects of the enzyme environment in an intact lung that may 

influence redox enzyme kinetics (e.g., competing redox enzymes, 

tissue permeation of electron acceptors, availability of electron donors, 

tissue perfusion) are not preserved. Thus, a change in the activity of a 

redox enzyme measured in lung tissue homogenate may not be 

representative of the change in its activity in the intact lung.3,5 

Furthermore, depending on the effect of hyperoxia on the activities of 

redox enzymes in various lung cell types, this in vitro approach may 

overestimate or underestimate hyperoxia-induced changes in the 

activities of redox enzymes in pulmonary capillary endothelial cells 

that survived exposure to 85% O2 for 7 days.3,21,22 This issue is 

especially important for lungs of rats exposed to 85% O2 for 7 days 

since the wet and dry weights of these lungs almost double mostly due 

to the large increase in the number of interstitial cells (~250%), while 

the number of capillary endothelial cells is half that of normoxic 

lungs.21,22 As a result, the cellular composition of these lungs changes 

significantly: the number of capillary endothelial cells as a percent of 

the total number of lungs cells decreases form ~45% (normoxic lungs) 

to ~15%, and the number of interstitial cells increases from ~29% 

(normoxic lungs) to ~54%.21,22 However, there are limited data on the 
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activities of redox enzymes in the intact lungs, in part because of the 

complexity of the intact lung.2-4,9,10,16 

Multiple indicator dilution (MID) methods have been an 

important research tool for evaluating capillary endothelial metabolic 

functions within a functioning organ.2,5,13,25,50,57 These methods involve 

the bolus injection or finite pulse infusion of two or more indicators 

into the organ’s arterial inlet, followed by measurement of their 

concentrations in the venous effluent as a function of time. The 

injected indicators usually include an intravascular indicator (i.e., 

confined to the vasculature of the organ) plus a test indicator that is a 

substrate or ligand for the metabolic function(s) of interest within the 

organ. The interactions of the test indicator with these metabolic 

function(s) on passage though the organ result in characteristic 

differences between the intravascular and test indicator venous 

effluent concentration vs. time curves. 

The information content of data resulting from MID methods can 

be complex. In addition to the targeted tissue metabolic processes 

(e.g., redox enzymes), other factors can influence the amount of test 

indicator that is removed and/or modified on passage through the 

organ. These include the subject of this investigation, namely, organ 

capillary perfusion kinematics (e.g., capillary mean transit time (t̄ c) 

and distribution of capillary transit times (hc(t))).2,3,7 The longer the 

capillary transit time, the more time available for test indicators to 

interact with targeted tissue metabolic processes. Furthermore, it can 

be shown mathematically that, all else being equal, the rate of test 

indicator interaction with tissue components is inversely proportional 

to the heterogeneity of the capillary transit time distribution.2,7,31 Thus, 

a change in measured indicator dilution data could be a result of a 

change in the activity of metabolic functions (e.g., redox enzymes), a 

change in organ perfusion kinematics, or a combination of both. 

Therefore, proper interpretation of MID data in terms of the kinetics of 

test indicator interactions with tissue metabolic processes can be 

confounded without an independent determination of the capillary 

transit time distribution and its mean.2,7 This is especially important for 

lungs of rats exposed to 85% O2 for 7 days which experience ~50% 

loss of capillary volume and endothelial surface area.21,22 To the best of 

our knowledge, there is no information regarding the effect of rat 

exposure to this hyperoxia model on hc(t) in the intact lungs. 
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Previously we developed an MID method for estimating capillary 

mean transit time and the distribution of capillary transit times in 

isolated perfused lungs and applied it to isolated perfused dog lung 

lobes, rabbit lung, and rat lung.2,6,8 The method involves the arterial 

bolus injection of an intravascular indicator and a test indicator that 

rapidly equilibrates (i.e., “flow-limited”) between blood and tissue on 

passage through the organ’s capillary or microvascular region, and the 

simultaneous measurement of their concentrations in the venous 

effluent as function of time.6,8,32 The method is based on the concept 

that comparison of the dispersion of an intravascular indicator and a 

flow-limited indicator which behaves the same way as the 

intravascular indicator within the conducting vessels, but can rapidly 

equilibrate between blood and tissue within the pulmonary capillaries, 

will provide information necessary to determine the moments of hc(t), 

i.e., mean transit time (first moment; t ̄ c) and variance (second central 

moment; σ2c). 

Recently, we demonstrated that the reduced form (CoQ1H2) of 

coenzyme Q1 (CoQ1; 2,3-dimethoxy-5-methyl-6-[3-methyl-2-butenyl]-

1,4-benzoquinone), redox active quinone, rapidly equilibrates between 

the perfusate and the tissue on passage through isolated perfused rat 

lungs.9 Thus, the objective of this study was to utilize the above MID 

method, with CoQ1H2 as the flow-limited test indicator and fluorescein 

isothiocyanate labeled dextran (FITC-dex) as the intravascular 

indicator, to determine the effect of rat exposure to 85% O2 for 7 days 

(hyperoxic rats) on t ̄ c and hc(t). 

EXPERIMENTAL METHODS 

Materials 

CoQ1 and other chemicals were purchased from Sigma (St. 

Louis, MO), unless noted otherwise. CoQ1H2 was prepared by reduction 

of CoQ1 with potassium borohydride (KBH4) as previously described.3 

Bovine serum albumin (BSA) was purchased from Serologicals Inc. 

(Gaithersburg, MD). 
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Animals 

For normoxic lung studies, male Sprague–Dawley rats (~300 g; 

Charles River) were exposed to room air. For the hyperoxic lung 

studies, age-matched rats were housed in a Plexiglas chamber (13W × 

23L × 12H in.) maintained at ~85% O2, balance N2 for 7 days with 

free access to food and water as previously described.3 The total gas 

flow was ~3.5 L/min, and the chamber CO2 was maintained at <0.5%. 

The temperature within the chamber was maintained at ~21 °C using 

a custom built cooling system. The chamber was opened every other 

day for ~15 min to clean the cage, weigh the animals, and replace 

food, water, and CO2 absorbent. The protocol was approved by the 

Institutional Animal Care and Use Committees of the Zablocki Veterans 

Affairs Medical Center and Marquette University (Milwaukee, WI). A 

total of 12 normoxic rats and 8 hyperoxic rats were studied. 

Isolated Perfused Rat Lung 

The isolated perfused rat lung preparation has been previously 

described.3,9 Briefly, each rat was anesthetized with pentobarbital 

sodium (40 mg/kg body wt. i.p.). The trachea was clamped, the chest 

opened and heparin (0.7 IU/g body wt.) was injected into the right 

ventricle, and a blood sample was taken for determining blood 

hematocrit. The pulmonary artery and the trachea were cannulated, 

and the pulmonary venous outflow was accessed via a cannula in the 

left atrium. For the pressure-flow experiments, the heart was excised 

and the pulmonary vein was open to atmosphere. The lung was 

removed from the chest and attached to a ventilation–perfusion 

system. The control perfusate contained in mM 4.7 KCl, 2.51 CaCl2, 

1.19 MgSO4, 2.5 KH2PO4, 118 NaCl, 25 NaHCO3, 5.5 glucose, and 5% 

BSA.2,3,9 The single pass perfusion system was primed (Master-flex 

roller pump) with the control perfusate maintained at 37 °C and 

equilibrated with 15% O2, 6% CO2, balance N2 resulting in perfusate 

PO2, PCO2 and pH of ~105 Torr, 40 Torr, and 7.4, respectively. Initially, 

control perfusate was pumped through the lung until the lung was 

evenly blanched and the venous effluent was clear of red blood cells, 

as determined by visual inspection. The lung was ventilated (40 

breaths/min) with end-inspiratory and end-expiratory pressures of 6 

and 3 mmHg, respectively, with the above gas mixture. The 

pulmonary arterial pressure was referenced to atmospheric pressure at 
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the level of the left atrium and monitored continuously during the 

course of the experiments. The venous outflow was referenced to 

atmospheric pressure. At the end of each experiment, the lung was 

weighed, and then dried (60 °C) to a constant weight for the 

determination of lung dry weight. 

Multiple Indicator Dilution Experiments 

An injection loop was included in the arterial line of the 

ventilation–perfusion system to allow the introduction of a ~0.1 mL 

bolus into the arterial inflow without altering the flow or perfusion 

pressure.2,3,9 The injection loop consisted of a Y-tube on the outflow 

side of the pump, which allowed perfusate to flow through either side 

of two parallel segments of tubing, each containing ~0.8 mL volume. A 

double solenoid pinch valve permitted flow through only one segment 

at any time. Thus, a bolus injection was made by injecting the 

indicator into the stagnant segment (while perfusate was flowing 

through the other segment into the lung) and then activating the 

solenoid pinch valve, so that the flow was directed through the 

indicator-containing segment. This allowed for the bolus to be 

introduced without changing pressure or flow. At the same time the 

solenoid pinched value was activated, the lung effluent was 

simultaneously diverted into the sampling tubes of a sample collector. 

Each lung was perfused with control perfusate containing 2 mM 

potassium cyanide (KCN) for 5 min at perfusate flow of 10 mL/min to 

inhibit mitochondrial complex III, which is the dominant site of CoQ1H2 

oxidation on passage through the rat lung.9 The respirator was then 

stopped at end expiration and a 0.1 mL bolus of control perfusate 

containing 2 mM KCN and either 35 μM FITC-dex or 1200 μM CoQ1H2 

was injected into the pulmonary arterial inflow tubing. Simultaneous to 

each bolus injection, the venous effluent was diverted into a modified 

Gilson Escargot fraction collector for continuous collection of lung 

effluent.2,3,9 For the FITC-dex bolus injection, 60 samples (0.15 mL 

each) were collected at a sampling interval of 0.9 s at a perfusate flow 

of 10 mL/min. For the CoQ1H2 injection, 60 samples (0.3 mL each) 

were collected at a sampling interval of 1.8 s at a flow of 10 mL/min. 

Previously, we derived the following relationship between the 

perfusate albumin (BSA) concentration and the extravascular mean 

http://dx.doi.org/10.1007/s10439-010-0092-5
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residence time (t ̄ e) of a flow-limited indicator on passage through the 

pulmonary circulation6,8  

                     

where M is the tissue-to-plasma partition coefficient of the flow-

limited indicator, K is the indicator–BSA binding equilibrium 

dissociation constant, F is the perfusate flow, Qt is the extravascular 

tissue volume accessible by the flow-limited indicator from the 

vascular region, and [BSA] is the perfusate BSA concentration. 6,8 

Equation (1) suggests that the value of t ̄ e for CoQ1H2 on passage 

through the lung can be manipulated by altering the perfusate BSA 

concentration. Hence, bolus injections of CoQ1H2 at different perfusate 

BSA concentrations can provide data equivalent to that which would be 

obtained with bolus injections of different flow-limited indicators 

having different t̄ e values.6 Thus, to evaluate the sensitivity of the 

estimated t ̄ c and hc(t) to the value of t ̄ e we examined the effect of 

perfusate BSA concentration on CoQ1H2 outflow curve following its 

arterial bolus injection. After the first two bolus injections with 

perfusate containing 5% BSA (control perfusate), the perfusate 

reservoir was refilled with an appropriate volume of fresh perfusate 

containing 3% BSA and 2 mM KCN. This was followed by another 0.1-

mL bolus injection of 3% BSA perfusate containing KCN and CoQ1H2, 

and sampling of the venous effluent as described above. 

Subsequently, another CoQ1H2 bolus injection was carried out with the 

perfusate BSA concentration at 10% 

An index of perfused lung capillary surface area was estimated 

as previously described.3,9 Briefly, a 150 μM 20-s pulse infusion of the 

angiotensin converting enzyme (ACE) substrate N-[3-(2-

Furyl)acryloyl]-Phe-Gly-Gly (FAPGG) was introduced into the lung 

using the control perfusate at a flow of 30 mL/min. Two venous 

effluent samples (~1.0 mL each) were collected between 15 and 20 s 

after the start of the infusion.3,9 The permeability–surface area product 

(PS, mL/min) for FAPGG, which is a measure of lung ACE activity, was 
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determined using Eq. (2) from the FAPGG concentrations measured in 

the venous effluent samples as previously described3,9:  

             PS = − F ln(1−E)          (2) 

where E = steady state extraction ratio = 1 −  
[𝐹𝐴𝑃𝐺𝐺]𝑜

𝐹𝐴𝑃𝐺𝐺𝑖
  ; 

[FAPGG]i is the infused arterial FAPGG concentration; [FAPGG]o is the 

steady state venous effluent FAPGG concentration calculated as the 

average [FAPGG] in the collected venous effluent samples, and F is the 

perfusate flow. The PS product is considered here to be an index of 

perfused capillary surface area.3,9 For all normoxic and hyperoxic lungs 

studied, the FAPGG pulse infusion was carried out at the beginning and 

at the end of the CoQ1H2 and FITC-dex bolus injection protocol 

described above to evaluate the stability of the lung over the time 

course of the experiments. 

At the end of the above bolus injections and FAPGG pulse 

infusion protocol the lung was removed from the perfusion system, the 

arterial and venous cannulae were connected, and the reservoir was 

refilled with control perfusate. An FITC-dex (35 μM) bolus injection at 

a perfusate flow of 10 mL/min was then carried out. Thirty samples 

(0.15 mL each) were collected at a sampling interval of 0.9 s. These 

data were used to determine the tubing transit time of the perfusion 

system and the bolus dispersion outside the lung. 

The concentrations of CoQ1H2 in the venous effluent samples 

were determined as previously described.2,3,9 Briefly, the venous 

effluent samples were first centrifuged (1 min at 5,600×g). For each 

sample, 100 μL of supernatant was then added to a centrifuge tube 

containing 10 μL potassium ferricyanide (12.1 mM in deionized H2O) to 

oxidize CoQ1H2 to CoQ1. Cold, absolute ethanol (~0.6 mL) was added, 

and the tube was mixed on a vortex mixer followed by centrifugation 

at 9,300×g for 5 min at 4 °C. A perfusate sample that had passed 

through the lungs but contained no CoQ1H2 was treated in the same 

manner and used as the blank for absorbance measurements. The 

concentration of CoQ1 (μM) in each perfusate sample, which is equal to 

sample CoQ1H2 concentration prior to the addition of potassium 

ferricyanide, was calculated from the absorbance of the fully oxidized 

supernatant in the tube at 275 nm (Beckman DU 7400 
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spectrophotometer) using a molar extinction coefficient of 14.30 mM−1 

cm−1 for CoQ1. 

The concentration of FITC-dex in each of the venous effluent 

samples was determined from the sample absorbance at 495 nm using 

a molar extinction coefficient of 93.5 mM−1 cm−1.2,3,9 

The calculated recoveries for FITC-dex and CoQ1H2 in the 

venous effluent samples were 93 ± 6 (SE) and 101 ± 1% for normoxic 

lungs, and 106 ± 5 and 109 ± 3% for hyperoxic lungs, respectively. 

Pressure-Flow Measurements 

To evaluate the effect of rat exposure to hyperoxia on the 

distensibility and vasodilatory properties of the pulmonary vascular 

bed, we carried out the following pressure-flow experiments on a 

group of normoxic and hyperoxic lungs. The lung was perfused with 

control perfusate at 10 mL/min and ventilated for several minutes, 

after which ventilation was halted and the lung was held at an airway 

pressure of 6 mmHg. The arterial pressure was then measured at flows 

of 35, 30, 25, 20, 15, 10, and 5 mL/min. The pump was then stopped 

and after ~15 s, long enough for the arterial pressure to reach 

equilibrium, a critical closing pressure (arterial pressure at zero flow) 

was recorded. Ventilation was then resumed, and the lung was 

perfused with control perfusate containing the vasodilator papaverine 

hydrochloride (0.6 mg/mL) for 4 min, after which ventilation was again 

halted and the above pressure-flow protocol was repeated.51 

Statistical Evaluation of Data 

Statistical comparisons were carried out using paired t-test, unpaired 

t-test, or ANOVA followed by Dunnett’s test, with p < 0.05 as the 

criterion for statistical significance. 

EXPERIMENTAL RESULTS 

Over the 7-day hyperoxic exposure period, rats lost ~10% of 

their pre-exposure body weights. During the first 48 h of exposure to 

hyperoxia, rats maintained their body weights, while between days 2 
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and 6, body weights decreased steadily. By day 7, the rats stopped 

losing body weight. 

Exposure to hyperoxia increased lung wet and dry weights by 

~100%, with no significant effect on wet/dry weight ratios as 

compared to normoxic lungs (Table 1). The lung wet weights of 

hyperoxic rats measured in this study (2.4 ± 0.21 (SE) g) are 

consistent with those reported by Crapo et al. (2.29 ± 0.44 (SD) g for 

~290 g rats) for the same exposure period.21 The lack of a significant 

difference in wet/dry weight ratios between normoxic and hyperoxic 

lungs (Table 1) is consistent with the hyperoxia-induced increase in 

lung wet weight being due to increase in lung cell mass rather than 

edema as shown by Crapo et al.21,22 

 

TABLE 1 Rat body weights, lung wet weights, lung dry weights, lung wet/dry 

weight ratios, and aortic blood hematocrit. 

Values are mean ± SE. n = 12 (normoxic) and n = 8 (hyperoxic) for body wt., lung 

dry wt. and blood hematocrit. For lung wt. and wet/dry wt., n = 9 and 5 for normoxic 
and hyperoxic lungs, respectively. 

*Significantly different between normoxic and hyperoxic lungs (t-test; p < 0.05). 

 

Exposure to hyperoxia increased aortic blood hematocrit by 

~15% (Table 1). This increase, which was also observed by Crapo et 

al. for the same exposure period, could be due to dehydration as 

suggested by Crapo et al.21,22 

Exposure to hyperoxia decreased PS (mL/min), which is a 

measure of lung ACE activity and an index of perfused capillary surface 

area, on average by 56% (Table 2). The PS values obtained from 

FAPGG pulse infusions carried out at the beginning and at the end of 

the bolus injection protocol were not significantly different (Table 2), 

indicating that perfusion and/or multiple bolus injections of CoQ1H2 
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and FITC-dex did not have significant effects on lung capillary 

endothelial surface area and/or ACE activity. 

 

TABLE 2 Lung angiotensin converting enzyme (ACE) activity at the start and end of 

the bolus injection protocol. 

PS (permeability–surface area product), which is a measure of lung ACE activity and 

an index of perfused capillary surface area for normoxic (n = 9) and hyperoxic (n = 5) 
rat lungs. Values are mean ± SE. 

*Significantly different between normoxic and hyperoxic lungs (t-test; p < 0.05). 

 

Figure 1 shows examples of venous effluent concentrations of 

FITC-dex and CoQ1H2 after their bolus injection into the arterial inlet of 

a normoxic lung (panel a) and a hyperoxic lung (panel b) perfused 

with three different BSA concentrations. The FITC-dex outflow curve 

indicates what the CoQ1H2 outflow curve would have looked like had 

the CoQ1H2 not interacted with the lung as it passed through the 

pulmonary vasculature. For the normoxic lung (panel a), the CoQ1H2 

curves are shifted to the right and more dispersed than the FITC-dex 

curve, consistent with rapid equilibration of CoQ1H2 between the 

perfusate and the lung tissue on its passage through the pulmonary 

circulation.2,3 Moreover, the CoQ1H2 curves show a progressive 

increase in the mean transit time of CoQ1H2, as indicated by the time 

position of the peak of the curve, on passage through the lung as 

perfusate BSA concentration decreased as predicted by Eq. (1). For 

the hyperoxic lung (panel b), the CoQ1H2 curves are also more 

dispersed than the FITC-dex curve, and the mean transit time of 

CoQ1H2 increased as the perfusate BSA concentration decreased. 

However, for the hyperoxic lung, the peaks of the CoQ1H2 curves are 

less shifted to the right relative to the peak of the FITC-dex curve as 

compared to the normoxic lung. 
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FIGURE 1 Venous effluent FITC-dex and CoQ1H2 normalized concentration (as a 

fraction of the injected amount per milliliter of effluent perfusate) vs. time data 

following the bolus injection of the indicators upstream from the pulmonary artery of a 

normoxic (panel a) and a hyperoxic (panel b) lung perfused with different perfusate 

%BSA concentrations. Lungs were treated with potassium cyanide (KCN) prior to bolus 

injections to inhibit mitochondrial complex III-mediated CoQ1H2 oxidation on passage 

through the lung. Solid lines are SRWF(t) fits. 

Perfusion pressures for hyperoxic lungs in the absence or 

presence of papaverine were not significantly different from the 

corresponding pressures for normoxic lungs over the range of flows 
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studied (Fig. 2). Moreover, for normoxic and hyperoxic lungs, 

perfusion pressure in the presence of papaverine was lower than that 

in the absence of papaverine over the range of flows studied. For each 

group of lungs, the effect of papaverine on perfusion pressure did not 

change over the range of flows studied, and was not different between 

normoxic (1.1 ± 0.05 (SD) Torr) and hyperoxic (1.1 ± 0.04 (SD) Torr) 

lungs. Change in perfusate %BSA had no effect on lung perfusion 

pressure at 10 mL/min for normoxic and hyperoxic lungs (data not 

shown). These results suggest that rat exposure to hyperoxic did not 

have significant effect on the distensibility or vasodilatory properties of 

the pulmonary vascular bed. 

 

FIGURE 2 Arterial pressure-flow data from normoxic (n = 3) and hyperoxic (n = 

3) lungs before (closed symbols) and after (open symbols) lung treatment with 

papaverine. (&) and (*) significantly different before and after lung treatment with 

papaverine for normoxic and hyperoxic lungs, respectively. Values are mean ± SE. 
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DATA ANALYSIS 

Moments of Co1QH2 and FITC-dex Outflow Curves 

The mean transit time (t̄ ) and variance (σ2) of each FITC-dex 

and CoQ1H2 outflow curve (C(t)) were determined using a model-based 

approach in order to minimize the effect of noise in the tail.6,8 Thus, for 

a given C(t), t ̄  and σ2 were obtained by fitting a shifted random walk 

function (SRWF(t)) to C(t). SRWF(t) is a probability density function 

whose functional form is defined by Eq. (3),7  

 

where 

 

The fitting procedure consists of determining the values of θ, ϕ, 

and ts for which Eq. (3), scaled by the inverse of the perfusate flow 

(F), best fits C(t) in the least squares sense. This procedure was 

implemented in MATLAB 7.0.1 using function ‘lsqcurvefit’, (The 

MathWorks, Inc.). The coefficient of variation (CV), a measure of the 

goodness of fit (see “List of Symbols”) between the measured outflow 

curve (C(t)) and the model SRWF(t) fit, was on average 12.2% for 

FITC-dex and 12.6% for CoQ1H2. 
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The CoQ1H2 extravascular mean residence time (𝑡̅e) at a given 

perfusate BSA concentration was determined by subtracting the mean 

transit time of the FITC-dex outflow curve (CR(t)) from that for the 

CoQ1H2 outflow curve (CF(t)) measured with the lung connected to the 

ventilation–perfusion system (Fig. 1), i.e.,  

 

where 𝑡̅R and 𝑡̅F are the mean transit times of CR(t) and CF(t), 

respectively, determined as described above. 

Evaluation of the Assumption of Rapidly Equilibrating 

Interactions of CoQ1H2 with Plasma Albumin (BSA) and 

with Lung Tissue 

Equation (1) provides a relationship between the extravascular 

mean residence time (t̄ e) and perfusate albumin concentration [BSA] 

for a diffusible test indicator for the case in which both (1) 

equilibration between perfusate and tissue of the free (i.e., not bound 

to plasma albumin) form of the indicator, and (2) association–

dissociation of the indicator with plasma protein and lung tissue occur 

rapidly in comparison to the capillary mean transit time.6,8 Algebraic 

manipulation of Eq. (1) results in Eq. (6)  

           
1

𝑡̅𝑒𝐹
  = 

1

𝑀𝑄𝑡
 + (

1

𝑀𝑄𝑡
) 

[𝐵𝑆𝐴]

𝐾
                     (6) 

 

Using the previously estimated value of K−1 for CoQ1H2 of 3.8 

per %[BSA],9 Eq. (6) is a oneparameter linear model for 1t¯eF with 

slope and intercept both equal to 1/MQt. Equation (6) was fit to the 

mean values of 1t¯eF vs. [BSA]K for the normoxic and hyperoxic lungs 

separately (Fig. 3). The ability of Eq. (6) to fit the data in Fig. 3 

reasonably well supports the assumption of rapidly equilibrating 

interactions of CoQ1H2 with perfusate BSA and normoxic and hyperoxic 

lung tissue.6,8 
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FIGURE 3 Symbols are data from normoxic (n = 6) and hyperoxic (n = 5) rat lung 

experiments plotted according to Eq. (6). K−1 was 3.8/%BSA.9 t ̄ e and F are the 

extravascular mean residence time and perfusate flow, respectively. Solid lines are Eq. 

(6) fit to data, resulting in a slope = intercept = 4.7 × 10−2 mL−1 for normoxic lungs 

(r2 = 0.98) and 2.0 × 10−2 mL−1 for hyperoxic lungs (r2 = 0.85). 

Rat exposure to hyperoxia increased the value of t ̄ e for CoQ1H2 

at all three perfusate BSA concentrations studied (Fig. 3). For 

instance, the value of t̄ e at a perfusate BSA of 5% for hyperoxic lungs 

was 73% larger than that for normoxic lungs (Table 3). This increase 

in t ̄ e could be due to a hyperoxia-induced increase in lung wet weight 

(Table 1) and/or increase in CoQ1H2 tissue-to-perfusate partition 

coefficient (M). 
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TABLE 3 Lung vascular mean transit time, variance and relative dispersion of 

vascular transit times, vascular volume, and CoQ1H2 extravascular mean residence 

time. 

t ̄ v, σ2v, RDv, and Qv are lung vascular mean transit time, variance of vascular transit 

times, relative distribution of vascular transit times, and vascular volume, respectively. 
t ̄ e is the extravascular mean residence time of CoQ1H2 on passage through lungs 

perfused with 5% BSA perfusate. n = 9 (normoxic) and 5 (hyperoxic) for all 
parameters except t̄ e for which n = 7 for normoxic lungs. Values are mean ± SE. 

*Significantly different between normoxic and hyperoxic lungs (t-test; p < 0.05). 

 

Lung Total Vascular Volume and Vascular Transit Time 

Distribution 

The lung vascular mean transit time (t ̄ v) and variance σ2v were 

obtained by finding the difference between the mean transit times and 

variances of the FITC-dex curves measured with (CR(t)) and without 

(tubing; Ctub(t)) the lung in place in the ventilation–perfusion system, 

i.e.,  

 

The lung vascular volume (Qv) was then determined as the product of 

𝑡�̅� and the perfusate flow (F), 

 

Qv = 𝑡�̅�𝐹                         (9) 

The vascular relative dispersion (RDv), a dimensionless measure of the 

heterogeneity of the lung vascular transit time distribution, was 

calculated as  

RDv = √𝛔𝑉
2  / 𝑡�̅� .                  (10) 
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Rat exposure to hyperoxia decreased vascular volume by an average 

of 21%, with no significant effect on 𝛔𝑉
2  or RDv (Table 3). 

Lung Capillary Mean Transit Time and Distribution of 

Capillary Transit Times 

The MID method developed by Audi et al. for estimating the 

lung capillary transit time distribution (hc(t)) is based on the following 

equations which relate the mean transit time, variance, and skewness 

of the measured outflow curves of the intravascular indicator (CR(t)) 

and the flow-limited indicator (CF(t)) to those of hc(t) (𝑡�̅�, 𝛔𝐶
2
, and 

𝐦𝐶
3
)6,8:  

 

Previous studies have demonstrated that >90% of the variance of the 

lung vascular transit time distribution (𝛔𝑉
2 ) in a dog lung lobe, rabbit 

lung, and rat lung was due to the capillary bed.2,6,8,20 Thus, algebraic 

manipulation of Eq. (11a), after substituting 𝛔𝑉
2  (Table 3) for 𝛔𝐶

2 , leads 

to the following relationship between 𝑡�̅� and the extravascular 

moments of CF(t)),6,8  

 

where 𝛔𝑒
2=𝛔𝐹

2−𝛔𝑅
2 . Model simulations (see “Discussion” section) were 

used to evaluate the impact of this assumption on the estimated value 
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of  𝑡�̅�. For this study, Eq. (12) was used to estimate 𝑡�̅� under the 

assumption that 𝛔𝐶
2   is equal to 𝛔𝑉

2  (Table 3). 

The CoQ1H2 outflow curves measured using the three different 

perfusate BSA concentrations (Fig. 1) are analogous to outflow curves 

of three different flowlimited indicators each with a different 𝑡�̅� value. 

Thus, the moments of each of these outflow curves can be used in Eq. 

(12) to obtain three independent estimates of 𝑡�̅�. Using this approach, 

the results in Table 4 show that perfusate BSA concentration had no 

significant effect on the estimated values of 𝑡�̅� and RDc in either the 

normoxic or the hyperoxic lungs. This result suggests that the 

estimated values of 𝑡�̅� and RDc are insensitive to the extravascular 

mean residence times of CoQ1H2 on its passage through either 

normoxic or hyperoxic lungs (Table 4). The results in Table 4 also 

show that the estimated value of 𝑡�̅� was 42% lower for hyperoxic 

lungs as compared to those for normoxic lungs. Moreover, the 

estimated value of the capillary relative dispersion RDC = √𝛔𝑉
2  / 𝑡�̅�, 

a dimensionless measure of the heterogeneity of hc(t), was 40% 

higher for hyperoxic lungs as compared to normoxic lungs. 

 

TABLE 4 Estimated values of the capillary mean transit time and relative 

dispersion as a function of perfusate %BSA concentration. 

𝑡�̅� and RDc are the pulmonary capillary mean transit time and relatively dispersion of 

the capillary transit time distribution, respectively. Values are mean ± SE. n = 6 and 5 

for normoxic and hyperoxic lungs, respectively. 𝑡�̅� was estimated using Eq. (12). 

*Significantly different between normoxic and hyperoxic lungs (t-test; p < 0.05). 
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One way of evaluating the assumption that the variance of the total 

vascular transit time distribution ( σ2v) is due to the capillary bed, i.e., 

𝛔𝐶
2
=𝛔𝑉

2 , is to rearrange Eq. (11a) to obtain the following relationship 

between 𝑡�̅� and 𝛔𝑒
2  

 

containing the one unknown parameter t ̄ c. The ability of Eq. 

(13) to fit the t ̄ e vs. σ2e data (Fig. 4) for the normoxic and hyperoxic 

bolus injection data is consistent with the above assumption. Table 5 

shows that the values of t̄ c estimated using Eq. (13) for normoxic and 

hyperoxic lungs are virtually the same as those estimated using Eq. 

(12) (Table 4). 
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FIGURE 4 Symbols are data from the outflow curves shown in Fig. 1 plotted 

according to Eq. (13). 𝑡�̅� and 𝛔𝑒
2 are CoQ1H2 extravascular mean residence time and 

variance, respectively. Solid lines are Eq. (13) fit to the normoxic (r2 = 0.99) and 

hyperoxic (r2 = 0.98) data. 

 

TABLE 5 Estimated values of lung capillary mean transit time, volume, and relative 

dispersion of the capillary transit time distribution. 

𝑡�̅�, RDc, and Qc are lung capillary mean transit time, relative dispersion of the capillary 

transit time distribution, and lung capillary volume, respectively. Qv is lung vascular 
volume. 𝑡�̅� was estimated using Eq. (13). Values are mean ± SE. n = 6 and 5 for 

normoxic and hyperoxic lungs, respectively. 

*Significantly different between normoxic and hyperoxic lungs (t-test; p < 0.05). 

 

A random walk function (Eq. 3) was used to approximate the 

functional shape of the capillary transit time distribution using the 

average of the estimated values of the capillary mean transit times 

and variances (Tables 3 and and5).5). The resulting approximations 

for the normoxic and hyperoxic hc(t) curves are shown in Fig. 5. 
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FIGURE 5 Approximation of the functional form of the capillary transit time 

distribution (hc(t)) for normoxic and hyperoxic lungs using a shift random walk 

function (Eq. 3) with the shift (ts) set to zero (see text). 

 

DISCUSSION 

The objective of this study was to evaluate the effect of rat 

exposure to hyperoxia (85% O2 for 7 days) on capillary mean transit 

time and capillary transit time distribution in the intact rat lung using 

the MID method developed by Audi et al. with CoQ1H2 as the flow-

limited indicator and FITC-dex as the intravascular indicator.6,8 The 

results demonstrate that rat exposure to this hyperoxia model 

decreases 𝑡�̅� by 42% and increases the relative dispersion of hc(t) by 

40%. 

For comparison, Table 6 summarizes previous estimates of 𝑡�̅�, RDc, 

and capillary volume (Qc = F𝑡�̅�) of the normoxic rat lung. To put these 
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results in perspective, it is useful to compare Qc values since it is less 

dependent on flow than is 𝑡�̅�. Table 6 shows that capillary volume 

estimated in this study is close to that estimated by Audi et al.2 with 
3H-alfentanil and 14C-diazepam as the flow-limited indicators, and to 

capillary volume estimated by Presson et al.47 using subpleural 

fluorescence video-microscopy under similar flow conditions. However, 

Table 6 shows that previous morphometric estimates of capillary 

volume (0.58–0.71 mL) are higher than that estimated in this study or 

using subpleural vessel fluorescence video-microscopy.21,48,52 This is 

not surprising since reported morphometric estimates of capillary 

volume have been considered to be close to their maximum value, 

which might not be achieved under the low-flow, low-pressure 

conditions in this study.6,8 

 

TABLE 6 Estimates of pulmonary capillary mean transit time and blood volume for 

rat lungs in chronological order. 

Estimates of pulmonary capillary blood volume (Qc), mean transit time (t̄ c), and 

relative dispersion (RDc) of hc(t). Values are mean ± SE. 

The estimated relative dispersion of the capillary transit time 

distribution for normoxic lungs of 0.82 ± 0.03 (SE) in this study (Table 

5) is similar to that estimated by Audi et al.2 using 3H-alfentanil and 
14C-diazepam as the flow-limited indicators (0.91), but smaller than 

that estimated using subpleural vessel fluorescence video-microscopy 

(0.57) under similar flow conditions (Table 6).47 This could be due in 

part to morphometric differences between the subpleural and 

intrapulmonary capillary beds,33,45 although Presson et al. suggested 

that these differences might not be significant for the rat lung.47 
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Rat exposure to hyperoxia (85% O2 for 7 days) decreased the 

lung capillary volume (and hence capillary mean transit time) by 42% 

from 0.41 ± 0.04 (SE) to 0.24 ± 0.03 mL (Table 5). This result is 

consistent with that measured by Crapo et al. using a morphometric 

method.21 There they showed that this hyperoxic model resulted in the 

loss of large sections of the pulmonary capillary bed and decreased the 

pulmonary capillary volume by ~50%, from 0.63 to 0.32 mL.21,22 

The hyperoxia-induced decrease in lung capillary volume is also 

consistent with the hyperoxia-induced 56% decrease in the rate (PS) 

of ACE-mediated FAPGG hydrolysis measured in this study (Table 2). 

Assuming no change in ACE activity per unit surface area between 

normoxic and hyperoxic lungs, the change in PS (Table 2) would be 

proportional to the change in perfused surface area.2,9 This 56% 

hyperoxia-induced decrease in PS product (Table 2) is consistent with 

the 50% decrease in surface area of the capillary endothelium 

measured by Crapo et al. using morphometric methods (4524 cm2 vs. 

2289 cm2).21,22 

Exposure of rats to hyperoxia decreased total lung vascular 

volume by 21%, with no significant effect on relative dispersion of lung 

vascular transit time distribution (Table 3). This hyperoxia-induced 

decrease in vascular volume (0.15 mL) (Table 3) is comparable to the 

hyperoxia-induced decrease in capillary volume (0.17 mL) (Table 5). 

This suggests that exposure to hyperoxia had no significant effect on 

the volume of the conducting vessels of the lung. As a result, capillary 

volume as a percentage of the vascular volume decreased from 58 ± 4 

(SE)% in normoxic lungs to 43 ± 4% in hyperoxic lungs (Table 5). 

The results of this study demonstrate that rat exposure to 

hyperoxia not only decreased the capillary volume, but also increased 

the relative dispersion of hc(t) by 40% from 0.82 ± 0.03 (SE) to 1.15 

± 0.01 for normoxic and hyperoxic lungs, respectively. To our 

knowledge, this is the first study to evaluate the effect of rat exposure 

to 85% O2 for 7 days on the heterogeneity of hc(t). This hyperoxia-

induced increase in RDc is revealed in the measured CoQ1H2 and FITC-

dex outflow curves (Fig. 1) as a decrease in the shift of the time 

positions of the peaks of CoQ1H2 outflow curves relative to that of the 

FITC-dex curve as demonstrated by the model simulations described 

below. 
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The estimated values of t̄ c and the relative dispersion (RDc) of 

hc(t) using Eq. (12) are independent of the extravascular volume of 

the rapidly equilibrating indicator. This is consistent with the results in 

Table 4 which show that the estimated values of t̄ c and RDc are not 

sensitive to changes in perfusate BSA concentration, which alters the 

tissue–plasma partition coefficient of CoQ1H2 and its apparent 

extravascular volume (Fig. 3). Thus, the estimated hyperoxiainduced 

decrease in t̄ c and increase in RDc cannot be explained by the larger 

extravascular volume of distribution (dilution effect) of CoQ1H2 in 

hyperoxic lungs. Similar changes in t ̄ c and RDc would be expected 

using Eq. (12) with other flow-limited indicators.  

The estimated distributions of capillary transit times in normoxic 

and hyperoxic lungs result from distributions of capillary flows, 

diameters, lengths, or combinations thereof.6-8 Separating the relative 

contribution of capillary flows vs. geometries to the distribution of 

capillary transit times requires additional information not available in 

the indicator dilution data themselves.7 

The functional form of hc(t) for normoxic and hyperoxic lungs 

was approximated using a shifted random walk function (Fig. 5) with 

the shift (minimum capillary transit time) set to zero since additional 

information such as skewness of hc(t) would be needed to determine 

this shift.6-8 Other right-skewed functions that have been used to 

approximate the functional form of hc(t) include the lagged normal 

density function and a time-shifted exponential function.6-8,12 For this 

study, the shifted random walk function was chosen since it provided a 

good fit to the measured FITC-dex and CoQ1H2 concentration vs. time 

outflow curves as indicated by the relatively low coefficient of 

variations. 

The pressure-flow experiments (Fig. 2) show that exposure to 

hyperoxia did not have a significant effect on the distensibility and 

vasodilatory properties of the pulmonary vascular bed. Thus, carrying 

out the MID experiments in the presence of papaverine and/or at a 

higher flow (and hence higher perfusion pressure) could have resulted 

in larger vascular and capillary volumes for normoxic and hyperoxic 

lungs, but would not have had a significant effect on the 

hyperoxiainduced % decrease in total vascular or capillary volume. 

This is consistent with the fact that the morphometrically measured 
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capillary volumes by Crapo et al. for normoxic (0.63 mL) and 

hyperoxic (0.32 mL) lungs are larger than those measured in this 

study (Table 5), but their hyperoxia-induced decrease in capillary 

volume (~50%) is close to that in this study (~42%).21,22 

The rat lung capillary mean transit time reported in this study is 

plasma mean transit time, which is longer than that for red blood cells 

(RBC) because of the Fahraeus effect.1,47 Presson et al. found the 

plasma mean transit time in subpleural capillaries of dog lungs to be 

~40% longer than that for RBC.46 Assuming similar capillary diameters 

in dog and rat lungs, and that the ratio of RBC velocity to plasma 

velocity in a lung capillary is flow independent, the estimated RBC 

mean transit time based on the results of this study would be ~0.25 s, 

which is close to the time needed for O2 to diffuse and react with 

RBC.47 This suggests that rat lungs have little reserve capillary RBC 

mean transit time.47 This could be in part due to the fact that the 

estimated plasma capillary mean transit time in this study does not 

account for capillary distension due to difference in lung perfusion 

pressure at normal cardiac output (~75 mL/min for 300 g rat) as 

compared to 10 mL/min perfusate flow used in this study (Fig. 2). 

Generally speaking, RBC transit time is more relevant for gas 

exchange between blood and air, whereas plasma transit time is more 

relevant for substrate exchange between blood and tissue and for the 

subsequent evaluation of the effect of rat exposure to hyperoxia on 

the activities of redox enzymes in the intact lung using indicator 

dilution methods. 

Exposure to hyperoxia increased aortic blood hematocrit by 

~15% (Table 1), consistent with results of previous studies, which 

have suggested this increase could be due to dehydration.21,22 Crapo et 

al. showed that unlike aortic blood hematocrit, morphometrically 

measured pulmonary capillary blood hematocrit was ~30% lower in 

hyperoxic lungs as compared to normoxic lungs.21,22 They suggested 

that this decrease could be due to some type of obstruction in large 

segments of the pulmonary capillary bed that allowed plasma to flow 

through these capillaries, but not red blood cells (RBC), and that RBC 

would have had to bypass these sections of the pulmonary capillary 

bed and shunt through larger vessels.21,22 This shunt is consistent with 

the fact that these animals show signs of peripheral cyanosis even in a 

hyperoxic environment. 21,22 Moreover, the existence of such shunt 
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could explain the fraction of capillaries with relatively short transit 

times in hyperoxic lungs (Fig. 5) and the early appearance of CoQ1H2 

on passage though hyperoxic lungs as compared to normoxic lungs 

(Fig. 1). 

To demonstrate the effect of an increase in the heterogeneity of 

hc(t) on the shift between the peaks of the outflow curves of an 

intravascular indicator and a flow-limited indicator, a previously 

developed mathematical model (Appendix) was utilized to simulate the 

outflow curves of intravascular and flow-limited indicators following 

their arterial bolus injection into a normoxic and a hyperoxic lung. For 

the normoxic model simulation, the values of t̄ c and RDc were set at 

2.5 s and 0.8, respectively. For the hyperoxic model simulation, the 

value of RDc was set at 1.2, while t ̄ c was held at 2.5 s. Both model 

simulations used the same t̄ e values (4, 8, and 12 s to simulate 

CoQ1H2 outflow curves with 10, 5, and 3% perfusate BSA 

concentrations, respectively) and the same level of bolus dispersion 

outside the capillary bed (i.e., tubing and conducting vessels). Thus, 

the only difference between the normoxic and hyperoxic models was 

the increased RDc value. Figure 6 shows the simulated outflow curves 

of the intravascular and flow-limited indicators from the normoxic 

(panel a) and hyperoxic (panel b) models. Increasing the RDc of hc(t) 

in the hyperoxic model (panel b) decreased the shift between the peak 

of the intravascular outflow curve and the peaks of the flow-limited 

outflow curves by an amount comparable to the hyperoxia-induced 

decrease in the shift between the peaks of the measured outflow 

curves of FITC-dex and CoQ1H2 (Fig. 1). 
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FIGURE 6 Simulations (see Appendix) of arterial bolus injections of an 

intravascular indicator (CR(t)) and a flow-limited (CF(t)) indicator with different 

extravascular mean residence times (t̄ e) in a normoxic (panel a) and a hyperoxic 

(panel b) lung. The normoxic and hyperoxic model simulations are assumed to have 

the same bolus dispersion outside the capillary bed, same capillary mean transit time 

(2.5 s), but different capillary relative dispersion (RDc = 0.8 and 1.2 for normoxic and 

hyperoxic lung simulations, respectively).  
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The simulated outflow curves shown in Fig. 6 (panel a) were 

also used to evaluate the assumption of Eq. (12) that all of the 

variance of the bolus dispersion within the lung vasculature is due to 

the capillary bed, rather than to conducting vessel. The moments of 

each of the simulated outflow curves were calculated (Eq. 3) and then 

used in Eq. (12) to estimate t ̄ c with 𝛔𝑉
2  set at (a) the actual value of 

𝛔𝐶
2
, (b) 1.1 times the actual value of 𝛔𝐶

2
,  (10% overestimation of 

𝛔𝐶
2
,), and c) 1.2 times the actual value of 𝛔𝐶

2
,  (20% overestimation of 

𝛔𝐶
2
,). Figure 7 shows the ratios of estimated (Eq. 12) to actual values 

of t̄ c. Overestimation of σ2c by 10 and 20% resulted on average in 

overestimation of t ̄ c by ~7 and ~15%, respectively, using Eq. (12). 

 

FIGURE 7 Ratio of estimated value (Estimated) of capillary mean transit time (t ̄ c) 

using Eq. (12) to that used in the simulations (Simulated) as a function of the ratio of 
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total vascular variance (𝛔𝑉
2 ,) to the capillary variance (𝛔𝐶

2
,) for three different 

extravascular mean residence times (t̄ e). The values of t ̄ c and 𝛔𝐶
2
,  used in the 

model simulations were 2.5 s and 4 s2, respectively.  

Equation (12) is equivalent to the superposition method 

developed by Goresky32 as implemented by Audi et al.8 Thus, one 

would expect the estimates of t̄ c obtained using the Goresky 

superposition method to be comparable to those obtained using Eq. 

(12) if the dispersion due to the tubing, injection, and sampling 

systems was removed from the FITC-dex and CoQ1H2 outflow curves 

before applying the superposition method.8 

Comparison of the results from this study with previous results 

using the MID method developed by Audi et al. in the isolated perfused 

dog lung lobe and rabbit lungs reveals quantitative differences in the 

estimated vascular and capillary mean transit times among these 

species.6,8 Assuming a normal cardiac output of 2.9 L/min for a 20-kg 

dog,6 we estimated the pulmonary capillary and total pulmonary 

vascular mean transit times to be 1.62 and 3.40 s, respectively.6 For a 

2.7-kg rabbit with a normal cardiac output of 340 mL/min, the 

estimated pulmonary capillary and total pulmonary vascular mean 

transit times were 0.76 and 1.70 s, respectively.8 Assuming a normal 

cardiac output of 75 mL/min for a-300 g rat,47 the estimated 

pulmonary capillary and total pulmonary vascular mean transit times 

in this study, based on the results in Tables 5, would be 0.33 and 0.57 

s, respectively. It is important to note that this estimate does not 

account for the effect of passive distension of blood vessels at this 

higher flow (Fig. 2). These transit times appear to be substantially 

shorter than those of the rabbit, which in turn are substantially shorter 

than those of the dog. However, the pulmonary capillary mean transit 

time as a percentage of the total vascular mean transit time appears 

to be similar for dogs (48%), rabbits (44%), and rats (58%). Thus, 

the shorter capillary mean transit time in the rat, as compared to 

those of the rabbit and dog, may be primarily attributed to the 

proportionately shorter total vascular mean transit time. Moreover, 

studies by Staub and Schultz53 and Mercer and Crapo42 show that the 

capillary length in rat lungs (~205 μm) was significantly shorter than 

in rabbit lungs (550–650 μm) and dog lungs (600–800 μm). 
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The pulmonary endothelium, which has a relatively large surface 

area and is in direct contact with blood-borne compounds, has the 

potential to influence the redox status and plasma concentrations of 

endogenous and exogenous blood-borne redox active compounds via 

cell surface and intracellular oxidoreductases.2-5,9-11,16,17,24,43,44 This 

might include a range of pharmacological, physiological, and toxic 

redox active compounds (e.g., quinones).2,9,18,41 The longer the 

capillary mean transit time, the more time available for redox active 

compounds to interact with the lung tissue on passage through the 

pulmonary circulation. Furthermore, the overall rate of substrate 

exchange between blood and tissue has been shown to be inversely 

proportional to the heterogeneity of hc(t).2,7,31 Thus, the hyperoxia-

induced decrease in t ̄ c and increase in the heterogeneity of hc(t) 

measured in this study could alter the bioavailability and bioactivity of 

blood-borne redox-active compounds, and hence their pro- or anti-

oxidant activity in lung tissue, blood vessels, and downstream organs. 

This is potentially important considering that the pulmonary 

endothelium is a primary target of lung O2 toxicity.21,23 Previously, we 

demonstrated using model simulations the impact of the heterogeneity 

of hc(t) on the rate of reduction of redox active test indicators on 

passage through the pulmonary capillary bed.2 

The pulmonary capillary mean transit time and transit time 

distribution, hc(t), are important determinants of lung function in 

health and disease.56 For instance, the effectiveness of lungs for 

providing adequate O2 exchange between air and blood is dependent 

on the blood spending sufficient time in the pulmonary capillaries. In 

addition, even if the blood is in some capillaries for a long time 

(capillaries with long transit times), but spends too little time in others 

(capillaries with short transit times), a gas exchange deficit can occur. 

This is because the rapid transit of blood through capillaries with short 

transit times can never be compensated for by slow transit through 

capillaries with long transit times. Thus, the hyperoxia-induced 

decrease in capillary mean transit time and increase in the relative 

dispersion of capillary transit time distribution determined in this study 

have the potential to negatively affect the ventilation–perfusion ratio 

and even produce a gas exchange deficit.22 This is consistent with the 

~50% drop in the diffusion capacity of the lungs in these hyperoxic 

animals estimated morphometrically by Crapo et al., and the fact that 
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these animals experience peripheral cyanosis even in a hyperoxic 

environment.21,22 

In conclusion, the results of this study demonstrate that 

estimates of the rat lung capillary transit time distribution can be 

obtained from the venous effluent concentration vs. time outflow 

curves of an intravascular indicator and one flow-limited indicator such 

as CoO1H2, measured following their arterial bolus injection. 

Furthermore, the results reveal that rat exposure to this hyperoxia 

model (85% O2 for 7 days) decreased lung capillary mean transit time 

and increased the heterogeneity of the lung capillary transit time 

distribution. These results are important for subsequent evaluation of 

the effect of this unique hyperoxia model on the activities of 

endothelial pro- and anti-oxidant redox enzymes in the intact lung 

using indicator dilution methods, and for elucidation of the potential 

role of these enzymes in rat tolerance to 100% O2 stimulated by pre-

exposure to 85% O2.7 
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LIST OF SYMBOLS 

BSA Bovine serum albumin 

hc(t) Capillary transit time distribution 

CR(t) 

Concentration (1/mL) of the intravascular reference indicator 

in the venous effluent at a time t following bolus injection at t 

= 0 

CF(t) 
Concentration (1/mL) of the flow-limited indicator in the 

venous effluent at a time t following bolus injection at t = 0 
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Ctub(t) 

Concentration (1/mL) of the intravascular indicator in the 

venous effluent at a time t following bolus injection (at t = 0) 

with the lung removed from the ventilation–perfusion system 

CV 

∑Mi=1(Ci−SRWFi)2(M−Par)√1M∑Mi=1Ci×100 = Coefficient of 

variation between outflow curve (C) and shifted random walk 

(SRWF) fit (%). M and Par are number of data points fitted 

and number model parameters (3 for SRWF), respectively 

FAPGG Angiotensin converting enzyme substrate 

   t ̄   Mean transit time (the first moment) (s) 

   t ̄ S  Lung vascular mean transit time (s) 

  t ̄ c  Lung capillary mean transit time (s) 

  t ̄ R 
Mean transit time of the intravascular indicator concentration  

vs. time outflow curve, CR(t) (s) 

  t ̄ F 
Mean transit time of the flow-limited indicator concentration 

vs. time outflow curve, CF(t) (s) 

  t ̄ tub 
Mean transit time of the tubing concentration vs. time outflow 

curve, Ctub(t) (s) 

  t ̄ e Extravascular mean residence time (s) 

   σ2 Variance (second central moment) (s2) 

    𝛔𝒗
𝟐  Variance of lung total vascular transit time distribution (s2) 

𝛔𝒄
𝟐 Variance of hc(t) (s2) 
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    𝛔𝑹
𝟐    

 Variance of the intravascular indicator concentration vs. time  

outflow curve, CR(t) (s2) 

𝛔𝑭
𝟐 

Variance of the flow-limited indicator concentration vs. time 

outflow curve, CF(t) (s2) 

𝛔𝒆
𝟐 σ2F−σ2R extravascular variance (s2) 

   m3 Skewness (third central moment) (s3) 

  m3
c Skewness of hc(t) (s3) 

 m3
R 

Skewness of the intravascular indicator concentration vs. time 

outflow curve (s3) 

 m3
F 

Skewness of the flow-limited indicator concentration vs. time 

outflow curve (s3) 

  Qv Lung vascular volume (mL) 

  Qc Lung capillary volume (mL) 

  Qt 
Lung tissue volume accessible to the flow-limited indicator 

from the vascular region (mL) 

 RDv Relative dispersion of the vascular transit time distribution 

 RDc Relative dispersion of the capillary transit time distribution 

 F Perfusate flow (mL/min) 

 M 
Tissue-to-plasma partition coefficient of the flow-limited 

indicator 

 K 
Equilibrium dissociation constant of the binding of the flow-

limited indicator with perfusate BSA 
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 PS 

Permeability–surface area product (mL/min), which is a 

measure of lung angiotensin converting enzyme activity and 

an index of perfused capillary surface area 

 Pa Lung perfusion pressure (Torr) 

APPENDIX: MATHEMATICAL MODEL 

Single Capillary Element The model utilized for this study has been 

described previously.6,7 Briefly, each capillary element consists (Fig. 8) 

of a capillary region and a surrounding extravascular region, with 

volumes Vc and Ve, respectively. The model assumes the following: 

 

FIGURE 8 A schematic diagram of a single capillary element model for the 

pulmonary disposition of an intravascular indicator (R) and a flow-limited indicator (D). 

1. The intravascular indicator is confined to the capillary region, 

whereas the flow-limited test indicator can diffuse out of the 

capillary region into the extravascular region. 

2. Flow is restricted to the vascular region. 

3. Transport in the extravascular region is only by diffusion. 

Diffusion of both intravascular and diffusible indicators in the 
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direction of flow is negligible as compared with the axial 

convective transport. 

4. With respect to the diffusible indicator, diffusion equilibrium 

within the vascular and the extravascular volumes in the 

direction perpendicular to the flow direction is instantaneous. 

Under these assumptions, the spatial and temporal variations in the 

concentrations of the intravascular (R) and flow-limited (D) indicators 

in the vascular and extravascular regions are described by the 

following species balance equations:  

 

where W = L/tc is the average flow velocity within the capillary region, 

tc is the capillary transit time, and x = 0 and x = L are the capillary 

inlet and outlet, respectively. R(t,x) and D(t,x) are the vascular 

concentration of R and D at distance x from the capillary inlet and time 

t. The initial conditions are 0 R(x,0) = D(x,0) = 0 and the boundary 

conditions R(0,t) = D(0,t) = Cin(t), where Cin(t) is the capillary inlet 

function. 

Whole Organ Model  To build a capillary bed or an organ, it is 

assumed that the capillary bed consists of Nx parallel non-interacting 

capillary elements, each possessing a different transit time tci (Fig. 

9).6,7 These capillary elements differ only in their length or flow or 

combination thereof. However, the per-unit capillary vascular volume, 

exchange surface area, and physical and chemical properties are the 

same for all capillary elements. Thus, the capillary bed has a 

distribution of vascular transit times, hc(t). 
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FIGURE 9 Nx parallel pathways corresponding to the Nx capillaries with different 

transit times tci, i = 1,…, Nx. Cin(t) is the capillary input function. [R]i and [D]i are the 

concentrations of the intravascular and flow-limited indicators at the outflow of the ith 

capillary element. 

The organ model assumes random coupling conditions between 

the conducting vessels and the exchanging vessels, i.e., all capillary 

elements are exposed to the same capillary input Cin(t). Given the 

linearity, commutativity, and associativity of the model, Cin(t) could be 

thought of as the outlet concentration curve that would exist if all 

arteries and veins were connected directly at a common nexus with no 

intervening capillaries. Thus, Cin(t) would include dispersion from the 

conducting vessels (i.e., arteries and veins), dispersion as a 

consequence of any tubing connections involved in the sampling or 

perfusion system, and dispersion resulting from an injection system. 

Thus, Cin(t) = (q/F)Ctub(t)*hn(t) where q is the mass of injected 

indicator, F is the total flow; Ctub(t) is a concentration function 

representing all dispersive processes occurring outside the organ, 

including the dispersion caused by the injection system; hn(t) is the 

transport function for intravascular and flow-limited diffusible 

indicators in the conducting vessels of the lung, and * is the 

convolution operator. 

For given values of Vc and Ve = Ft̄ e, and a given hc(t) and Cin(t), 

each represented by a shifted random walk function (Eq. 3 above) as 

previously described, the single capillary element equations (Eqs. A1, 

A2) were solved numerically for each of the Nx capillaries with transit 

times ti, i = 1,…, Nx as shown in Fig. 9.6,7 Then the capillary outflow 

concentrations for the intravascular and diffusible indicators CR(t) and 
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CF(t) are obtained by summing (doing a mass balance) the outflow 

concentrations, [R]i(t) and [D]i(t), over all Nx capillaries, where each 

capillary outflow is weighted by its corresponding Hi = (Δt/2)(hc(ti − 

Δt/2) + hc(ti + Δt/2)), the flow-weighted fraction of capillaries with 

transit time tci, and Δt is the transit time increment. Thus,  

 

Figure 6 shows examples of simulated organ outflow curves of an 

intravascular indicator and three flow-limited indicators with different 

extravascular mean residence times (t ̄ e). 

References 

1. Albrecht KH, Gaehtgens P, Pries A, Heuser M. The Fahraeus effect in 

narrow capillaries (i.d. 3.3 to 11.0 micron) Microvasc Res. 

1979;18:33–47.  

2. Audi SH, Bongard RD, Dawson CA, Siegel D, Roerig DL, Merker MP. 

Duroquinone reduction during passage through the pulmonary 

circulation. Am J Physiol Lung Cell Mol Physiol. 2003;285:L1116–

L1131.  

3. Audi SH, Bongard RD, Krenz GS, Rickaby DA, Haworth ST, Eisenhauer J, 

Roerig DL, Merker MP. Effect of chronic hyperoxic exposure on 

duroquinone reduction in adult rat lungs. Am J Physiol Lung Cell Mol 

Physiol. 2005;289:L788–L797.  

4. Audi SH, Bongard RD, Okamoto Y, Merker MP, Roerig DL, Dawson CA. 

Pulmonary reduction of an intravascular redox polymer. Am J Physiol 

Lung Cell Mol Physiol. 2001;280:L1290–L1299.  

5. Audi SH, Dawson CA, Ahlf SB, Roerig DL. Oxygen dependency of 

monoamine oxidase activity in the intact lung. Am J Physiol Lung Cell 

Mol Physiol. 2001;281:L969–L981.  

http://dx.doi.org/10.1007/s10439-010-0092-5
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932033/figure/F6/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Annals of Biomedical Engineering, Vol. 38, No. 11 (November 2010): pg. 3449-3465. DOI. This article is © Springer and 
permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Springer. 

41 

 

6. Audi SH, Krenz GS, Linehan JH, Rickaby DA, Dawson CA. Pulmonary 

capillary transport function from flow-limited indicators. J Appl Physiol. 

1994;77:332–351.  

7. Audi SH, Linehan JH, Krenz GS, Dawson CA. Accounting for the 

heterogeneity of capillary transit times in modeling multiple indicator 

dilution data. Ann Biomed Eng. 1998;26:914–930.  

8. Audi SH, Linehan JH, Krenz GS, Dawson CA, Ahlf SB, Roerig DL. Estimation 

of the pulmonary capillary transport function in isolated rabbit lungs. J 

Appl Physiol. 1995;78:1004–1014.  

9. Audi SH, Merker MP, Krenz GS, Ahuja T, Roerig DL, Bongard RD. 

Coenzyme Q1 redox metabolism during passage through the rat 

pulmonary circulation and the effect of hyperoxia. J Appl Physiol. 

2008;105:1114–1126.  

10. Audi SH, Olson LE, Bongard RD, Roerig DL, Schulte ML, Dawson CA. 

Toluidine blue O and methylene blue as endothelial redox probes in the 

intact lung. Am J Physiol Heart Circ Physiol. 2000;278:H137–H150.  

11. Audi SH, Zhao H, Bongard RD, Hogg N, Kettenhofen NJ, Kalyanaraman B, 

Dawson CA, Merker MP. Pulmonary arterial endothelial cells affect the 

redox status of coenzyme Q0. Free Radic Biol Med. 2003;34:892–907.  

12. Bassingthwaighte JB, Ackerman FH, Wood EH. Applications of the lagged 

normal density curve as a model for arterial dilution curves. Circ Res. 

1966;18:398–415.  

13. Bassingthwaighte JB, Goresky CA, Linehan JH. Whole Organ Approaches 

to Cellular Metabolism: Permeation, Cellular Uptake, and Product 

Formation. New York: Springer; 1998.  

14. Beasley R, Aldington S, Weatherall M, Robinson G, McHaffie D. Oxygen 

therapy in myocardial infarction: an historical perspective. J R Soc 

Med. 2007;100:130–133.  

15. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, Zhang 

X, Matthay MA, Ware LB, Homer RJ, Lee PJ, Geick A, de Fougerolles 

AR, Elias JA. Hyperoxia causes angiopoietin 2-mediated acute lung 

injury and necrotic cell death. Nat Med. 2006;12:1286–1293.  

16. Bongard RD, Krenz GS, Linehan JH, Roerig DL, Merker MP, Widell JL, 

Dawson CA. Reduction and accumulation of methylene blue by the 

lung. J Appl Physiol. 1994;77:1480–1491.  

http://dx.doi.org/10.1007/s10439-010-0092-5
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Annals of Biomedical Engineering, Vol. 38, No. 11 (November 2010): pg. 3449-3465. DOI. This article is © Springer and 
permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Springer. 

42 

 

17. Bongard RD, Merker MP, Shundo R, Okamoto Y, Roerig DL, Linehan JH, 

Dawson CA. Reduction of thiazine dyes by bovine pulmonary arterial 

endothelial cells in culture. Am J Physiol. 1995;269:L78–L84.  

18. Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide 

radicals and hydrogen peroxide by NADH-ubiquinone reductase and 

ubiquinolcytochrome c reductase from beef-heart mitochondria. Arch 

Biochem Biophys. 1977;180:248–257.  

19. Capellier G, Maupoil V, Boussat S, Laurent E, Neidhardt A. Oxygen toxicity 

and tolerance. Minerva Anestesiol. 1999;65:388–392.  

20. Clough AV, Haworth ST, Hanger CC, Wang J, Roerig DL, Linehan JH, 

Dawson CA. Transit time dispersion in the pulmonary arterial tree. J 

Appl Physiol. 1998;85:565–574.  

21. Crapo JD, Barry BE, Foscue HA, Shelburne J. Structural and biochemical 

changes in rat lungs occurring during exposures to lethal and adaptive 

doses of oxygen. Am Rev Respir Dis. 1980;122:123–143.  

22. Crapo JD, Peters-Golden M, Marsh-Salin J, Shelburne JS. Pathologic 

changes in the lungs of oxygen-adapted rats: a morphometric 

analysis. Lab Invest. 1978;39:640–653.  

23. Crapo JD, Tierney DF. Superoxide dismutase and pulmonary oxygen 

toxicity. Am J Physiol. 1974;226:1401–1407.  

24. Dawson CA, Audi SH, Bongard RD, Okamoto Y, Olson L, Merker MP. 

Transport and reaction at endothelial plasmalemma: distinguishing 

intra- from extracellular events. Ann Biomed Eng. 2000;28:1010–

1018.  

25. Dawson CA, Audi SH, Krenz GS, Roerig DL. Endothelium and compound 

transfer. In: Feinendegen LE, Shreeve WW, Eckelman WC, Bahk YW, 

Wagner HN Jr, editors. Molecular Nuclear Medicine: The Challenge of 

Genomics and Proteomics to Clinical Practice. New York: Springer; 

2003. pp. 201–216. 

26. Fisher AB. Oxygen utilization and toxicity in the lungs. In: Fishman AP, 

editor. Handbook of Physiology: The Respiratory System. Bethesda: 

Williams & Wilkins; 1987. pp. 231–254. 

27. Fisher AB, Beers MF. Hyperoxia and acute lung injury. Am J Physiol Lung 

Cell Mol Physiol. 2008;295:L1066.  

http://dx.doi.org/10.1007/s10439-010-0092-5
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Annals of Biomedical Engineering, Vol. 38, No. 11 (November 2010): pg. 3449-3465. DOI. This article is © Springer and 
permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Springer. 

43 

 

28. Frank L, Iqbal J, Hass M, Massaro D. New “rest period” protocol for 

inducing tolerance to high O2 exposure in adult rats. Am J Physiol. 

1989;257:L226–L231.  

29. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. 

Lab Invest. 1982;47:412–426.  

30. Freeman BA, Topolosky MK, Crapo JD. Hyperoxia increases oxygen radical 

production in rat lung homogenates. Arch Biochem Biophys. 

1982;216:477–484.  

31. Gonzalez-Fernandez JM, Atta SE. Maximal substrate transport in capillary 

networks. Microvasc Res. 1973;5:180–198.  

32. Goresky CA. A linear method for determining liver sinusoidal and 

extravascular volumes. Am J Physiol. 1963;204:626–640.  

33. Guntheroth WG, Luchtel DL, Kawabori I. Pulmonary microcirculation: 

tubules rather than sheet and post. J Appl Physiol. 1982;53:510–515.  

34. Heffner JE, Repine JE. Pulmonary strategies of antioxidant defense. Am 

Rev Respir Dis. 1989;140:531–554.  

35. Ho YS, Dey MS, Crapo JD. Antioxidant enzyme expression in rat lungs 

during hyperoxia. Am J Physiol. 1996;270:L810–L818. [ 

36. Howell K, Preston RJ, McLoughlin P. Chronic hypoxia causes angiogenesis 

in addition to remodelling in the adult rat pulmonary circulation. J 

Physiol. 2003;547:133–145.  

37. Jamieson D, Chance B, Cadenas E, Boveris A. The relation of free radical 

production to hyperoxia. Annu Rev Physiol. 1986;48:703–719.  

38. Kim V, Benditt JO, Wise RA, Sharafkhaneh A. Oxygen therapy in chronic 

obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5:513–518.  

39. Kimball RE, Reddy K, Peirce TH, Schwartz LW, Mustafa MG, Cross CE. 

Oxygen toxicity: augmentation of antioxidant defense mechanisms in 

rat lung. Am J Physiol. 1976;230:1425–1431.  

40. Kwak DJ, Kwak SD, Gauda EB. The effect of hyperoxia on reactive oxygen 

species (ROS) in rat petrosal ganglion neurons during development 

using organotypic slices. Pediatr Res. 2006;60:371–376.  

http://dx.doi.org/10.1007/s10439-010-0092-5
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Annals of Biomedical Engineering, Vol. 38, No. 11 (November 2010): pg. 3449-3465. DOI. This article is © Springer and 
permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Springer. 

44 

 

41. Lenaz G. Quinone specificity of complex I. Biochim Biophys Acta. 

1998;1364:207–221.  

42. Mercer RR, Crapo JD. Three-dimensional reconstruction of the rat acinus. 

J Appl Physiol. 1987;63:785–794.  

43. Merker MP, Audi SH, Bongard RD, Lindemer BJ, Krenz GS. Influence of 

pulmonary arterial endothelial cells on quinone redox status: effect of 

hyperoxia-induced NAD(P)H:quinone oxidoreductase 1. Am J Physiol 

Lung Cell Mol Physiol. 2006;290:L607–L619.  

44. Merker MP, Bongard RD, Kettenhofen NJ, Okamoto Y, Dawson CA. 

Intracellular redox status affects transplasma membrane electron 

transport in pulmonary arterial endothelial cells. Am J Physiol Lung Cell 

Mol Physiol. 2002;282:L36–L43.  

45. Miller WS. The Lung. Springfield, IL: Charles C. Thomas; 1947.  

46. Presson RG, Jr, Graham JA, Hanger CC, Godbey PS, Gebb SA, Sidner RA, 

Glenny RW, Wagner WW., Jr Distribution of pulmonary capillary red 

blood cell transit times. J Appl Physiol. 1995;79:382–388.  

47. Presson RG, Jr, Todoran TM, De Witt BJ, McMurtry IF, Wagner WW., Jr 

Capillary recruitment and transit time in the rat lung. J Appl Physiol. 

1997;83:543–549.  

48. Randell SH, Mercer RR, Young SL. Neonatal hyperoxia alters the 

pulmonary alveolar and capillary structure of 40-day-old rats. Am J 

Pathol. 1990;136:1259–1266.  

49. Saugstad OD. Optimal oxygenation at birth and in the neonatal period. 

Neonatology. 2007;91:319–322.  

50. Schwab AJ, Goresky CA. Hepatic uptake of protein-bound ligands: effect 

of an unstirred Disse space. Am J Physiol. 1996;270:G869–G880.  

51. Shi W, Eidelman DH, Michel RP. Differential relaxant responses of 

pulmonary arteries and veins in lung explants of guinea pigs. J Appl 

Physiol. 1997;83:1476–1481.  

52. Sjostrom K, Crapo JD. Structural and biochemical adaptive changes in rat 

lungs after exposure to hypoxia. Lab Invest. 1983;48:68–79.  

53. Staub NC, Schultz EL. Pulmonary capillary length in dogs, cat and rabbit. 

Respir Physiol. 1968;5:371–378.  

http://dx.doi.org/10.1007/s10439-010-0092-5
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Annals of Biomedical Engineering, Vol. 38, No. 11 (November 2010): pg. 3449-3465. DOI. This article is © Springer and 
permission has been granted for this version to appear in e-Publications@Marquette. Springer does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Springer. 

45 

 

54. Turrens JF, Freeman BA, Levitt JG, Crapo JD. The effect of hyperoxia on 

superoxide production by lung submitochondrial particles. Arch 

Biochem Biophys. 1982;217:401–410.  

55. Valenca Sdos S, Kloss ML, Bezerra FS, Lanzetti M, Silva FL, Porto LC. 

Effects of hyperoxia on Wistar rat lungs. J Bras Pneumol. 

2007;33:655–662.  

56. West JB, Wagner PD. Ventilation-perfusion relationships. In: Crystal RG, 

West JB, Weibel ER, Barnes PJ, editors. The Lung: Scientific 

Foundations. Philadelphia: Lippincott-Raven; 1997. pp. 1693–1709. 

57. Zierhut ML, Gardner JC, Spilker ME, Sharp JT, Vicini P. Kinetic modeling of 

contrast-enhanced MRI: an automated technique for assessing 

inflammation in the rheumatoid arthritis wrist. Ann Biomed Eng. 

2007;35:781–795.  

 

About the Authors 

Said H. Audi:  said.audi@marquette.edu 

 

http://dx.doi.org/10.1007/s10439-010-0092-5
http://epublications.marquette.edu/

	Marquette University
	e-Publications@Marquette
	11-1-2010

	Distribution of Capillary Transit Times in Isolated Lungs of Oxygen-Tolerant Rats
	Madhavi Ramakrishna
	Zhuohui Gan
	Anne V. Clough
	Robert C. Molthen
	David L. Roerig
	See next page for additional authors
	Authors


	tmp.1444153320.pdf.eHW2A

