430 research outputs found

    The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dietary isothiocyanates (ITCs) are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway.</p> <p>Methods</p> <p>The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases.</p> <p>Results</p> <p>ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected.</p> <p>Conclusion</p> <p>These results demonstrate that MEKK1 is directly modified and inhibited by ITCs, and that this correlates with inhibition of downstream activation of SAPK. These results support the conclusion that ITCs may carry out many of their actions by directly targeting important cell regulatory proteins.</p

    Identification of Transcription Factors Regulating CTNNAL1 Expression in Human Bronchial Epithelial Cells

    Get PDF
    Adhesion molecules play important roles in airway hyperresponsiveness or airway inflammation. Our previous study indicated catenin alpha-like 1 (CTNNAL1), an alpha-catenin-related protein, was downregulated in asthma patients and animal model. In this study, we observed that the expression of CTNNAL1 was increased in lung tissue of the ozone-stressed Balb/c mice model and in acute ozone stressed human bronchial epithelial cells (HBEC). In order to identify the possible DNA-binding proteins regulating the transcription of CTNNAL1 gene in HBEC, we designed 8 oligo- nucleotide probes corresponding to various regions of the CTNNAL1 promoter in electrophoretic mobility shift assays (EMSA). We detected 5 putative transcription factors binding sites within CTNNAL1 promoter region that can recruit LEF-1, AP-2α and CREB respectively by EMSA and antibody supershift assay. Chromatin immunoprecipitation (ChIP) assay verified that AP-2 α and LEF-1 could be recruited to the CTNNAL1 promoter. Therefore we further analyzed the functions of putative AP-2 and LEF-1 sites within CTNNAL1 promoter by site-directed mutagenesis of those sites within pGL3/FR/luc. We observed a reduction in human CTNNAL1 promoter activity of mutants of both AP-2α and LEF-1 sites. Pre-treatment with ASOs targeting LEF-1and AP-2α yielded significant reduction of ozone-stress-induced CTNNAL1 expression. The activation of AP-2α and LEF-1, followed by CTNNAL1 expression, showed a correlation during a 16-hour time course. Our data suggest that a robust transcriptional CTNNAL1 up-regulation occurs during acute ozone-induced stress and is mediated at least in part by ozone-induced recruitments of LEF-1 and AP-2α to the human CTNNAL1 promoter

    Apoptosis Induced by Cytoskeletal Disruption Requires Distinct Domains of MEKK1

    Get PDF
    MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the MAPK JNK and is required for microtubule inhibitor-induced apoptosis in B cells. Here, we find that apoptosis induced by actin disruption via cytochalasin D and by the protein phosphatase 1/2A inhibitor okadaic acid also requires MEKK1 activation. To elucidate the functional requirements for activation of the MEKK1-dependent apoptotic pathway, we created mutations within MEKK1. MEKK1-deficient cells were complemented with MEKK1 containing mutations in either the ubiquitin interacting motif (UIM), plant homeodomain (PHD), caspase cleavage site or the kinase domain at near endogenous levels of expression and tested for their sensitivity to each drug. We found that both the kinase activity and the PHD domain of MEKK1 are required for JNK activation and efficient induction of apoptosis by drugs causing cytoskeletal disruption. Furthermore, we discovered that modification of MEKK1 and its localization depends on the integrity of the PHD

    Lithium reduces apoptosis and autophagy after neonatal hypoxia–ischemia

    Get PDF
    Lithium is used in the treatment of bipolar mood disorder. Reportedly, lithium can be neuroprotective in models of adult brain ischemia. The purpose of this study was to evaluate the effects of lithium in a model of neonatal hypoxic–ischemic brain injury. Nine-day-old male rats were subjected to unilateral hypoxia–ischemia (HI) and 2 mmol/kg lithium chloride was injected i.p. immediately after the insult. Additional lithium injections, 1 mmol/kg, were administered at 24-h intervals. Pups were killed 6, 24 or 72 h after HI. Lithium reduced the infarct volume from 24.7±2.9 to 13.8±3.3 mm3 (44.1%) and total tissue loss (degeneration + lack of growth) from 67.4±4.4 to 38.4±5.9 mm3 (43.1%) compared with vehicle at 72 h after HI. Injury was reduced in the cortex, hippocampus, thalamus and striatum. Lithium reduced the ischemia-induced dephosphorylation of glycogen synthase kinase-3β and extracellular signal-regulated kinase, the activation of calpain and caspase-3, the mitochondrial release of cytochrome c and apoptosis-inducing factor, as well as autophagy. We conclude that lithium could mitigate the brain injury after HI by inhibiting neuronal apoptosis. The lithium doses used were in the same range as those used in bipolar patients, suggesting that lithium might be safely used for the avoidance of neonatal brain injury

    Subtype-specific CpG island shore methylation and mutation patterns in 30 breast cancer cell lines

    Get PDF
    BACKGROUND: Aberrant epigenetic modifications, including DNA methylation, are key regulators of gene activity in tumorigenesis. Breast cancer is a heterogeneous disease, and large-scale analyses indicate that tumor from normal and benign tissues, as well as molecular subtypes of breast cancer, can be distinguished based on their distinct genomic, transcriptomic, and epigenomic profiles. In this study, we used affinity-based methylation sequencing data in 30 breast cancer cell lines representing functionally distinct cancer subtypes to investigate methylation and mutation patterns at the whole genome level. RESULTS: Our analysis revealed significant differences in CpG island (CpGI) shore methylation and mutation patterns among breast cancer subtypes. In particular, the basal-like B type, a highly aggressive form of the disease, displayed distinct CpGI shore hypomethylation patterns that were significantly associated with downstream gene regulation. We determined that mutation rates at CpG sites were highly correlated with DNA methylation status and observed distinct mutation rates among the breast cancer subtypes. These findings were validated by using targeted bisulfite sequencing of differentially expressed genes (n=85) among the cell lines. CONCLUSIONS: Our results suggest that alterations in DNA methylation play critical roles in gene regulatory process as well as cytosine substitution rates at CpG sites in molecular subtypes of breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0356-2) contains supplementary material, which is available to authorized users

    Lectins: production and practical applications

    Get PDF
    Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities

    An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus

    Get PDF
    Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2 x 10(6) reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue
    corecore