28 research outputs found

    Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) and serine biosynthetic pathway genes are co-ordinately increased during anabolic agent-induced skeletal muscle growth

    Get PDF
    We aimed to identify novel molecular mechanisms for muscle growth during administration of anabolic agents. Growing pigs (Duroc/(Landrace/Large-White)) were administered Ractopamine (a beta-adrenergic agonist; BA; 20ppm in feed) or Reporcin (recombinant growth hormone; GH; 10mg/48hours injected) and compared to a control cohort (feed only; no injections) over a 27-day time course (1, 3, 7, 13 or 27-days). Longissimus Dorsi muscle gene expression was analyzed using Agilent porcine transcriptome microarrays and clusters of genes displaying similar expression profiles were identified using a modified maSigPro clustering algorithm. Anabolic agents increased carcass (p=0.002) and muscle weights (Vastus Lateralis: p<0.001; Semitendinosus: p=0.075). Skeletal muscle mRNA expression of serine/one-carbon/glycine biosynthesis pathway genes (Phgdh, Psat1 and Psph) and the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase-M (Pck2/PEPCK-M), increased during treatment with BA, and to a lesser extent GH (p<0.001, treatment x time interaction). Treatment with BA, but not GH, caused a 2-fold increase in phosphoglycerate dehydrogenase (PHGDH) protein expression at days 3 (p<0.05) and 7 (p<0.01), and a 2-fold increase in PEPCK-M protein expression at day 7 (p<0.01). BA treated pigs exhibit a profound increase in expression of PHGDH and PEPCK-M in skeletal muscle, implicating a role for biosynthetic metabolic pathways in muscle growth

    A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    Get PDF
    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198C>G SNP (odds ratio=8.6; P=0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5′-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198C>G SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression

    Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased mammographic density is one of the strongest independent risk factors for breast cancer. It is believed that one third of breast cancers are derived from breasts with more than 50% density. Mammographic density is affected by age, BMI, parity, and genetic predisposition. It is also greatly influenced by hormonal and growth factor changes in a woman's life cycle, spanning from puberty through adult to menopause. Genetic variations in genes coding for hormones and growth factors involved in development of the breast are therefore of great interest. The associations between genetic polymorphisms in genes from the IGF pathway on mammographic density and circulating levels of IGF1, its binding protein IGFBP3, and their ratio in postmenopausal women are reported here.</p> <p>Methods</p> <p>Samples from 964 postmenopausal Norwegian women aged 55-71 years were collected as a part of the Tromsø Mammography and Breast Cancer Study. All samples were genotyped for 25 SNPs in IGF1, IGF2, IGF1R, IGF2R, IGFALS and IGFBP3 using Taqman (ABI). The main statistical analyses were conducted with the PROC HAPLOTYPE procedure within SAS/GENETICS™ (SAS 9.1.3).</p> <p>Results</p> <p>The haplotype analysis revealed six haploblocks within the studied genes. Of those, four had significant associations with circulating levels of IGF1 or IGFBP3 and/or mammographic density. One haplotype variant in the IGF1 gene was found to be associated with mammographic density. Within the IGF2 gene one haplotype variant was associated with levels of both IGF1 and IGFBP3. Two haplotype variants in the IGF2R were associated with the level of IGF1. Both variants of the IGFBP3 haplotype were associated with the IGFBP3 level and indicate regulation in cis.</p> <p>Conclusion</p> <p>Polymorphisms within the IGF1 gene and related genes were associated with plasma levels of IGF1, IGFBP3 and mammographic density in this study of postmenopausal women.</p

    Estrogen-dependent responses of the mammary fat pad in prepubertal dairy heifers

    No full text
    Ovaries are absolutely required for development of the mammary parenchyma (PAR) in cattle, reflecting estrogen-dependent epithelial cell proliferation. However, the estrogen receptor (ER) that mediates the mammary estrogen effects, ER alpha, is absent in proliferating epithelial cells. In the mouse, this discrepancy is explained in part by the ability of the mammary fat pad (MFP) to synthesize epithelial cell mitogens such as IGF-I in response to estrogen. Consistent with a similar role for the bovine MFP 30% of its fibroblasts and adipocytes were immunoreactive for ER alpha in prepubertal dairy heifers. To assess estrogen-dependent gene expression in the MFF, 16 prepubertal dairy heifers were randomly assigned to a 2 X 2 factorial. The first factor was ovarian status, with heifers undergoing bilateral ovariectomy or left intact at 4.6 months of age. The second factor was applied 30 days after surgery and consisted of injection of estrogen or excipient. After 3 days of injection, heifers were administered an intrajugular bolus of bromodeoxyuricline (BrdU) and slaughtered 2 h later. The estrogen injection, but not ovarian status, caused significant increases in the fraction of epithelial cells labeled with BrdU and produced tissue-specific effects on gene expression. In the PAR, estrogen injection increased IGF-I gene expression by twofold despite reductions of 50% or more in ER alpha mRNA abundance and the fraction of epithelial cells immunoreactive for ER alpha. The estrogen-dependent increase in IGF-I mRNA was greater in the MFP presumably because estrogen failed to downregulate ER alpha expression in this mammary compartment. Finally, estrogen-responsiveness of the MFP appears unique among the bovine fat depots as estrogen injection did not induce IGF-I expression in its s.c. counterpart. Our data demonstrate that the bovine MFP is highly responsive to exogenous estrogen, consistent with a role for this tissue compartment in communicating its effects on epithelial cell proliferation

    Regulation of gene expression in the bovine mammary gland by ovarian steroids

    No full text
    It is well established that estrogen is required for mammary epithelial cell proliferation and ductal development in the growing animal, and that lobuloalveolar development during gestation is dependent on progesterone. The effects of these steroid hormones on gene expression in the mammary gland are mediated primarily by their respective nuclear hormone receptors, which function as hormone-bound transcription factors. To gain insight into how estrogen and progesterone regulate mammary gland growth and function in cattle, we and others have characterized the expression patterns of their cognate nuclear hormone receptors in the bovine mammary gland throughout development, pregnancy, and lactation. This work has identified a lack of expression of estrogen receptor beta and a greater abundance of progesterone receptor during lactation in the bovine mammary gland, compared with the rodent gland. We speculate that interactions among the estrogen receptor isoforms that regulate progesterone receptor expression may contribute to these species differences. Further, demonstrated expression of substantial quantities of estrogen receptor within the prepubertal bovine mammary fat pad, along with coordinated insulin-like growth factor-I expression, suggests that this tissue may stimulate parenchymal growth via an estrogen-responsive paracrine mechanism. In addition, the recent availability of bovine genomic sequence information and microarray technologies has permitted the study of global gene expression in the mammary gland in response to the steroid environment. We have identified more than 100 estrogen-responsive genes, of which the majority are novel estrogen gene targets. Estrogen-induced changes in gene expression were consistent with increased mammary epithelial cell proliferation, increased extracellular matrix turnover in parenchyma, and increased extracellular matrix deposition in the fat pad. A comparison of estrogen-responsive genes in the mammary glands of humans, mice, and cattle suggests considerable variation among species, as well as potential differences in regulatory elements in common estrogen receptor gene targets. Continuing studies using advanced molecular techniques should assist in elucidating the complex regulation of mammary function at the transcript level

    Ontogenic and nutritional regulation of steroid receptor and IGF-I transcript abundance in the prepubertal heifer mammary gland

    No full text
    In prepubertal cattle, mammary development is characterized by the growth of an epithelial-rich parenchyma (PAR) into the mammary fiat pad (MFP). This proliferation and accumulation of mammary epithelial cells require estrogen. Paradoxically, both epithelial cell proliferation and PAR accumulation rate decline with rising plasma estrogen as puberty approaches. The possibility that variation in abundance of estrogen receptors (ERs) in PAR or MFP accounts for a portion of these effects has not been examined in cattle. Additionally, we recently demonstrated that MFP is highly responsive to exogenous estrogen, suggesting that this tissue may play a role in coordinating estrogen's. effects oil PAR; however, the developing bovine MFP has yet to be studied in detail. To address these hypotheses, Holstein heifers were assigned to planes of nutrition supporting body growth rates of 950 (E) or 650 (R) g/day and harvested every 50 kg from 100 to 350 kg body weight (BW). Post-harvest, their mammary glands were dissected into PAR and MFP compartments. Transcript abundance of genes encoding members of the ER family (ER alpha, ER beta, and estrogen-related receptor alpha-1 (ERR alpha)) and estrogen-responsive genes (IGF-I and progesterone receptor (PR)) were measured in both mammary compartments by quantitative real-time RT-PCR. Significant expression was detected for all genes in both compartments, with the exception of the ER beta gene. Transcript abundance of both ER alpha and IGF-I decreased linearly with increasing BW within both compartments. ERR alpha and PR expressions decreased with increasing BW in PAR but not in MFP. Nutrition stimulated ERa and ERR(x expression in the PAR but had no effect on IGF-I or PR in either PAR or MFP. Overall, ERa and IGF-I transcript abundance are consistent with the drop in mammary epithelial cell proliferation and PAR accretion observed over development, but do not support a negative effect of nutrition on PAR growth

    Identification of estrogen-responsive genes in the parenchyma and fat pad of the bovine mammary gland by microarray analysis

    No full text
    Identification of estrogen-responsive genes is an essential step toward understanding mechanisms of estrogen action during mammary gland development. To identify these genes, 16 prepubertal heifers were used in a 2 X 2 factorial experiment, with ovarian status (intact or ovariectomized) as the first factor and estrogen treatment as the second (control or estradiol). Heifers were ovariectomized at similar to 4.5 mo of age, and estrogen treatments were initiated 1 mo later. After 3 days of treatment, gene expression was analyzed in the parenchyma and fat pad of the bovine mammary gland using a high-density oligonucleotide microarray. Oligonucelotide probes represented 40,808 tentative consensus sequences from TIGR Bos taurus Gene Index and 4,575 singleton expressed sequence tags derived from libraries of pooled mammary gland and gut tissues. Microarray data were analyzed by use of the SAS mixed procedure, with an experiment-wide permutation-based significance level of P < 0.1. Considerable differences in basal gene expression were noted between mammary parenchyma and fat pad. A total of 124 estrogen-responsive genes were identified, with most responding only in the parenchyma or the fat pad. The majority of genes identified were not previously reported to be estrogen responsive. These undoubtedly include genes that are regulated indirectly but also include known estrogen-targeted genes and novel genes with potential estrogen-responsive elements in their promoter regions. The distinctive expression patterns regulated by estrogen in parenchyma and fat pad shed light on the need for both tissues to obtain normal mammary development
    corecore