93 research outputs found

    A new green's function formulation for modeling homogeneous objects in layered medium

    Get PDF
    A new Green's function formulation is developed systematically for modeling general homogeneous (dielectric or magnetic) objects in a layered medium. The dyadic form of the Green's function is first derived based on the pilot vector potential approach. The matrix representation in the moment method implementation is then derived by applying integration by parts and vector identities. The line integral issue in the matrix representation is investigated, based on the continuity property of the propagation factor and the consistency of the primary term and the secondary term. The extinction theorem is then revisited in the inhomogeneous background and a surface integral equation for general homogeneous objects is set up. Different from the popular mixed potential integral equation formulation, this method avoids the artificial definition of scalar potential. The singularity of the matrix representation of the Green's function can be made as weak as possible. Several numerical results are demonstrated to validate the formulation developed in this paper. Finally, the duality principle of the layered medium Green's function is discussed in the appendix to make the formulation succinct. © 1963-2012 IEEE.published_or_final_versio

    A novel implementation of discrete complex image method for layered medium Green's function

    Get PDF
    A novel implementation of discrete complex image method (DCIM) based on the Sommmerfeld branch cut is proposed to accurately capture the far-field behavior of the layered medium Green's function as a complement to the traditional DCIM. By contour deformation, the Green's function can be naturally decomposed into branch-cut integration (radiation modes) and pole contributions (guided modes). For branch-cut integration, matrix pencil method is applied, and the alternative Sommerfeld identity in terms of k z integration is utilized to get a closed-form solution. The guided modes are accounted for with a pole-searching algorithm. Both one-branch-cut and two-branch-cut cases are studied. Several numerical results are presented to validate this method. © 2011 IEEE.published_or_final_versio

    A new closed-form evaluation of layered medium Green'S function

    Get PDF
    A new closed-form evaluation of layered medium Green's function is proposed in this paper. The discrete complex image method (DCIM) is extended to sampling along the Sommerfeld branch cut, to capture the far field interaction. Contour deformation technique is applied to decompose the Green's function into radiation modes (branch cut integration) and guided modes (surface-wave poles). The matrix pencil method is implemented to get a closed-form solution, with the help of an alternative Sommerfeld identity. Numerical results are presented to demonstrate the accuracy of this method. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA., 3-8 July 2011. In IEEE Antennas and Propagation Society. International Symposium, 2011, p. 3211-321

    Modeling electrically small structures in layered medium with augmented EFIE method

    Get PDF
    Electrically small structures embedded in a planarly layered medium are modeled by the augmented electric field integral equation (EFIE) method in this paper. By separating charge as extra unknown list, and enforcing the current continuity equation, an augmented EFIE (A-EFIE) can be setup. The matrix-friendly formulation of layered medium Green's function is applied and the frequency scaling of the impedance matrix in the moment method is analyzed when the frequency tends to zero. Rank deficiency and the charge neutrality enforcement is also discussed in detail. Numerical results show that the low frequency breakdown of electrically small structures embedded in a layered medium can be effectively remedied by this A-EFIE method. © 2011 IEEE.published_or_final_versionThe 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA., 3-8 July 2011. In IEEE APSURSI Digest, 2011, p. 3218-322

    An augmented electric field integral equation for layered medium Green's function

    Get PDF
    This paper proposes an augmented electric field integral equation (A-EFIE) for layered medium Green's function. The newly developed matrix-friendly formulation of layered medium Green's function is applied in this method. By separating charge as extra unknown list, and enforcing the current continuity equation, the traditional EFIE can be cast into a generalized saddle-point system. Frequency scaling for the matrix-friendly formulation is analyzed when frequency tends to zero. Rank deficiency and the charge neutrality enforcement of the A-EFIE for layered medium Green's function is discussed in detail. The electrostatic limit of the A-EFIE is also analyzed. Without any topological loop-searching algorithm, electrically small conducting structures embedded in a general layered medium can be simulated by using this new A-EFIE formulation. Several numerical results are presented to validate this method at the end of this paper. © 2010 IEEE.published_or_final_versio

    Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function

    Get PDF
    A rigorous surface integral equation approach is proposed to study the spontaneous emission of a quantum emitter embedded in a multi-layered plasmonic structure with the presence of arbitrarily shaped metallic nanoscatterers. With the aid of the Fermi's golden rule, the spontaneous emission of the emitter can be calculated from the local density of states, which can be further expressed by the imaginary part of the dyadic Green's function of the whole electromagnetic system. To obtain this Green's function numerically, a surface integral equation is established taking into account the scattering from the metallic nanoscatterers. Particularly, the modeling of the planar multilayered structure is simplified by applying the layered medium Green's function to reduce the computational domain and hence the memory requirement. Regarding the evaluation of Sommerfeld integrals in the layered medium Green's function, the discrete complex image method is adopted to accelerate the evaluation process. This work offers an accurate and efficient simulation tool for analyzing complex multilayered plasmonic system, which is commonly encountered in the design of optical elements and devices. © 2012 Optical Society of America.published_or_final_versio

    A unified Hamiltonian solution to Maxwell-Schrodinger equations for modeling electromagnetic field-particle interaction

    Get PDF
    A novel unified Hamiltonian approach is proposed to solve Maxwell–Schrödinger equation for modeling the interaction between classical electromagnetic (EM) fields and particles. Based on the Hamiltonian of electromagnetics and quantum mechanics, a unified Maxwell–Schrödinger system is derived by the variational principle. The coupled system is well-posed and symplectic, which ensures energy conserving property during the time evolution. However, due to the disparity of wavelengths of EM waves and that of electron waves, a numerical implementation of the finite-difference time-domain (FDTD) method to the multiscale coupled system is extremely challenging. To overcome this difficulty, a reduced eigenmode expansion technique is first applied to represent the wave function of the particle. Then, a set of ordinary differential equations (ODEs) governing the time evolution of the slowly-varying expansion coefficients are derived to replace the original Schrödinger equation. Finally, Maxwell’s equations represented by the vector potential with a Coulomb gauge, together with the ODEs, are solved self-consistently. For numerical examples, the interaction between EM fields and a particle is investigated for both the closed, open and inhomogeneous electromagnetic systems. The proposed approach not only captures the Rabi oscillation phenomenon in the closed cavity but also captures the effects of radiative decay and shift in the open free space. After comparing with the existing theoretical approximate models, it is found that the approximate models break down in certain cases where a rigorous self-consistent approach is needed. This work is helpful for the EM simulation of emerging nanodevices or next-generation quantum electrodynamic systems

    Review of multi-scale electromagnetic modeling

    Get PDF
    This paper reviews various methods to solve multiscale problems ranging from low-frequency methods to very high-frequency methods. ©2010 IEEE.published_or_final_versionThe 2010 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sydney, N.S.W., 20-24 September 2010. In Proceedings of ICEAA'10, 2010, p. 641-64

    A functional variant in the Stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork

    Get PDF
    There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18:1) by desaturating stearic acid (18:0). Here we describe a total of 18 mutations in the promoter and 3′ non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18:1/18:0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18:0+18:1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18:1/18:0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18:1/18:0 and, consequently, the proportion of monounsaturated to saturated fat.This research was supported by grants from the Spanish Ministry of Science and Innovation (AGL2009-09779 and AGL2012-33529). RRF is recipient of a PhD scholarship from the Spanish Ministry of Science and Innovation (BES-2010-034607). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of manuscript
    corecore