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Abstract—A new closed-form evaluation of layered medium
Green’s function is proposed in this paper. The discrete complex
image method (DCIM) is extended to sampling along the Som-
merfeld branch cut, to capture the far field interaction. Contour
deformation technique is applied to decompose the Green’s
function into radiation modes (branch cut integration) and
guided modes (surface-wave poles). The matrix pencil method
is implemented to get a closed-form solution, with the help of an
alternative Sommerfeld identity. Numerical results are presented
to demonstrate the accuracy of this method.

I. INTRODUCTION

The integral equation method [1] based on the layered
medium Green’s function [2] is very important in model-
ing microstrip antennas and integrated circuits. However, the
layered medium Green’s function is very hard to calculate
compared to its free space counterpart, due to the so-called
Sommerfeld integral, which is oscillatory and slowly conver-
gent. The discrete complex image method (DCIM) [3], [4] is
one of the most popular methods to speed up the calculation.
In this method, the integration kernel is first approximated
by a set of complex exponential functions, by using either
Prony’s method [5] or matrix pencil method [6], and the
Sommerfeld identity [7] is then applied to get the closed-form
solution. In this way, the layered medium Green’s function
can be expressed by a summation of scalar free space Green’s
function, with complex locations and magnitudes, and the
evaluation is thus very efficient.

However, the DCIM becomes inaccurate when the inter-
action is in the far field region (ρ � 0), since the original
sampling path cannot effectively capture certain singularities,
which correspond to the guided waves and lateral waves phys-
ically. To remedy this, several modifications have been made
during the last two decade. A robust two-level approximation
[8] was proposed to modify the sampling path or integration
path. This path can separate the sharp-transition region from
the smooth-varying region, and thus can carry more singularity
information. In [9], a direct DCIM was developed to push
the sampling path closer to the poles. Recently, a three-
level DCIM [10] was developed to capture not only pole
singularities, but also branch-point singularity, to make the
DCIM more accurate for far field interaction.

In this paper, we propose an alternative way to capture
the far field. Other than introducing extra segments of the
sampling path, we simply deform the sampling path to the
Sommerfeld branch cut (SBC) when ρ is relatively large.
The matrix pencil method is then applied to approximate the
function along the SBC, which can be mapped into the real
axis in the kz plane. The pole contributions are accounted for
by applying a robust pole-searching algorithm [11]. Numerical
results are shown to demonstrate the accuracy of this method.

II. FORMULATION

A. Layered Medium Green’s Function

There are various methods to derive the layered medium
Green’s function, the one applied here follows [12],

Ḡ(r, r′) = (∇× ẑ)(∇′ × ẑ)gTE(r, r′)

+ 1
k2
nm

(∇×∇× ẑ)(∇′ ×∇′ × ẑ)gTM(r, r′)
(1)

where m denotes the layer where source point is, and n
denotes the layer where observation point is. Here k2nm =
ω2εnμm, and gTE/TM(r, r′) can be expressed as

g(r, r′) =
i

8π

∫ +∞

−∞

dkρ
kmzkρ

H
(1)
0 (kρρ)F (kρ, z, z

′) (2)

where F (kρ, z, z
′) is the propagation factor [7], kmz =√

k2m − k2ρ, and H
(1)
0 (kρρ) is the first kind Hankel function of

order 0. By applying integration by part, the dyadic Green’s
function can be cast into several scalar Green’s functions in the
electric field integral equation (EFIE) formulation. In this for-
mula, only the zeroth-order Hankel function is involved; hence
the Green’s functions have the lowest singularity. We only
consider the following two Green’s functions for simplicity,
which is commonly encountered in the microstrip structures.

gss(r, r
′) = k2ρg

TE(r, r′) (3)

gφ(r, r
′) =

∂z∂z′

k2nm
gTM(r, r′)− gTE(r, r′) (4)

where the partial derivative can be easily calculated in the
spectral domain.
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Fig. 1. The sampling path in the kz plane and kρ plane in the traditional
DCIM.

B. Traditional DCIM

For the Green’s function shown in (3) and (4), a general
expression can be written down as

g(ρ) =
i

8π

∫ +∞

−∞

dkρ
kρ
kz

H
(1)
0 (kρρ)g̃(kρ) (5)

where the z and z′ dependence is not explicitly shown. The
basic idea of the DCIM is to approximate the integration kernel
as a superposition of weighted complex exponentials,

g̃(kρ) =

M∑
i=1

aie
ikzbi (6)

In order to apply the matrix pencil method to obtain ai and
bi, the sampling path in the kz plane of the traditional DCIM
is set to be

kz = k

[
it+ (1−

t

T0
)

]
, 0 ≤ t ≤ T0 (7)

where k is the wavenumber in the layer to be analyzed, and
t is a real variable. The sampling path in the kz plane and
corresponding kρ plane are shown in Fig. 1. The closed-form
solution of the Green’s function shown in (5) can be finally
obtained

g(ρ) =

M∑
i=1

ai
eikri

4πri
, ri =

√
ρ2 + b2i (8)

with the help of the Sommerfeld identity [7]

eikr

r
=

i

2

∫ +∞

−∞

dkρ
kρ
kz

H
(1)
0 (kρρ)e

ikzz (9)

The far field prediction of the traditional DCIM is poor, and
various remedies have been proposed [8], [9], [10]. In the
following, we propose an new way to solve this problem.

Fig. 2. The Sommerfeld integration path (SIP), Sommerfeld branch cut
(SBC) and poles in the complex kρ plane.

C. DCIM Based on the Sommerfeld Branch Cut

When the transverse distance is large, we can deform the
integration contour to the Sommerfeld branch cut (SBC). Here
we assume that the layered medium is backed by a PEC ground
plane. In this case, there is only one branch cut associated
with the top layer. The integral defined along the Sommerfeld
integration path (SIP) is equivalent to the the path integral
along the SBC and some pole contributions, shown in Fig. 2.
Mathematically,

g = gbranch + gpole (10)

where

gbranch =
i

8π

∫
SBC

dkρ
kρ
kNz

H
(1)
0 (kρρ)g̃(kρ) (11)

gpole = −
1

4

∑
q

kρ,q
kNz,q

H
(1)
0 (kρ,qρ)Res [g̃(kρ,q)] (12)

The poles and residues can be obtained by a pole-searching
algorithm [11]; they correspond to the guided modes. For the
branch cut integration, we can perform a variable transform.
So (11) becomes

gbranch =
i

8π

∫ +∞

−∞

dkNzH
(1)
0 (kρρ)g̃(kρ) (13)

For this integration kernel, similar technique can be applied to
approximate it with complex exponentials, and the alternative
Sommerfeld identity can be implemented to get a closed-form
solution,

eikr

r
=

i

2

∫ +∞

−∞

dkzH
(1)
0 (kρρ)e

ikzz (14)

III. NUMERICAL RESULTS

A four-layer model with a PEC bottom layer is shown in
Fig. 3. The working frequency is set to be f = 2.6 GHz,
and the source and observation points are at the interface of
the air layer (top layer) and the dielectric layer. We apply
the traditional DCIM for small ρ, and switch it to the new
DCIM when ρ is large. The transition region can be set in
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Fig. 3. The four-layer model with a PEC bottom layer, unit: mm.
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Fig. 4. The magnitude of gss versus k0ρ in log scale for the four-layer model.
The working frequency is f = 2.6 GHz, and the source and observation points
are at the air-substrate interface. The asymptotic behavior is 1/ρ2.

100 < k0ρ < 101, where k0 is the free space wavenumber.
We here set the transition point at k0ρ = 100.5. The gss shown
in (3) is first calculated by the DCIM, with magnitude versus
k0ρ shown in Fig. 4. The results agree very well with that
of numerical integration. Next the gφ in (4) is calculated and
shown in Fig. 5. Again good agreement between the DCIM
and the numerical integration can be observed. Since there is
only one real TM pole found for this layered medium at this
frequency, the far field of gss is dominated by the lateral wave
(∼ 1/ρ2) and that of gφ is dominated by the guided wave
(∼ 1/ρ

1

2 ), as are shown in Fig. 4 and Fig. 5.

IV. CONCLUSION

A new discrete complex image method (DCIM) is developed
to accurately evaluate the far field interaction for the layered
medium Green’s function, as a complement to the traditional
DCIM. By contour deformation, the Green’s function can be
naturally decomposed into the radiation modes and guided
modes. The guided modes can be obtained by a robust pole-
searching algorithm and the radiation modes can be calculated
in a closed form, so the evaluation can be made efficient
compared to the direct numerical integration. For near field,
we can switch back to the traditional DCIM, since the latter
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Fig. 5. The magnitude of gφ versus k0ρ in log scale for the four-layer model.
The working frequency is f = 2.6 GHz, and the source and observation points
are at the air-substrate interface. The asymptotic behavior is 1/ρ

1

2 .

one is well-developed and has good performance for the near
field interaction.
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