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Review of Multi-Scale Electromagnetic Modeling  
W. C. Chew1,2, L.J. Jiang1, H.Y. Chao3, A. J. Hesford4,  M.K. Li5, Z.G. Qian6, Y.G. Liu1, Y.P 

Chen1, Z.H. Ma1, L.E. Sun2, M.S. Tong2, C. Davis7, W.E.I. Sha1 
 

Abstract − This paper reviews various methods to solve multi-
scale problems ranging from low-frequency methods to very 
high-frequency methods.  

1 INTRODUCTION 

Solving electromagnetics problems is a challenging 
task, especially when the structure is multi-scale.   A 
challenging problem in computational 
electromagnetics is in solving problems in the low-
frequency regime, especially the regime between static 
and electrodynamics.   When the wavelength is much 
longer than the size of the structure, circuit physics 
prevails.   When the wavelength is sizeable compared 
to the structure, wave physics becomes important, and 
a simulation method has to capture the wave physics 
interaction.   When a structure is multi-scale, then both 
circuit physics and wave physics are important.   A 
simulation method has to capture both physics. 
    In this presentation, we will discuss various 
methods to solve the multi-scale problems, starting 
with the use of preconditioners, followed by the use of 
the equivalence principle algorithm (EPA).   Then we 
discuss the use of the augmented electric-field integral 
equation (A-EFIE) method for various problems.   
Finally, we discuss solution methods in the short-
wavelength limit.   

2 PRECONDITIONER AND PARALLEL 
COMPUTING 

One can also solve multi-scale problems by the use of 
a preconditioner such as the self-box inclusion method 
[1,2].  When a geometry has multiple scales and is 
discretized into elements of disparate sizes, the 
pertinent matrix has a large range of eigenvalues, 
giving rise to an ill-conditioned matrix system.   The 
small length scales usually give rise to large 
eigenvalues that can eclipse other eigenvalues 
significant to the problem.  One way to remove the 
large eigenvalues is by designing a self-box inclusion 
preconditioner.   In this method, an inclusion box is 
designed around geometry with fine meshes.  The 
inversion of the matrix relevant to the fine meshes is 
then used as a preconditioner.  We have found that this 
can significantly reduce the condition number of the 
matrix system, and allow convergence by iterative 
solvers.    
     A parallel computer code [2] has been developed 
making use of these concepts.  As a result, multi-scale 

problems with several million unknowns have been 
solved (see Figure 1). 
 

 

 
Figure 1.  A multi-scale problem involving an XM antenna 
mounted on a car which is in turn mounted on a ground plane.   
Parallel computing with MLFMA and 3.6M unknowns were 
used. 

3 EQUIVALENCE PRINCIPLE ALGORITHM  

The equivalence principle algorithm (EPA) [3,4] is 
a good way to decompose a larger problem into 
smaller problem domains.  It also allows regions of 
circuit physics to be separated from the regions of 
wave physics.   The use of EPA allows a large 
problem to be decomposed into a sum of smaller 
problems, so that only smaller problems need to be 
solved at one time.   Then the solution to the larger 
problem is accomplished by rigorously stitching the 
smaller problems together. 

Recently, we have developed an EPA that allows 
the equivalence surface to cut through metal, and 
break an object involving metal into smaller objects 
(Figure 2).   

Figure 3 shows the use of EPA to simulate the 
multiscale problem of an XM antenna on top of a car.  
The unknown count involved for EPA is 355, 305, and 
the code has been accelerated with an eight-level 
MLFMA.  GMRES with 50 restart was used to reduce 
the residual error to 2.0E-2 after 200 iterations.   The 
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total memory usage was 2.6 GB, and the computer 
used was a single processor Dell Precision 670, taking 
54.2 s per iteration. 

 

 
Figure 2.  Equivalence surfaces are used to break a large object 
into smaller objects to facilitate easier solutions. 

We can also use the EPA concept to break a large 
30 by 30 antenna array into tiny problems (Figure 4).   
The antenna array problem constitutes 7.2 million 
unknowns.  Using EPA, the unknown count is reduced 
to 0.86 million (since only unknowns on an 
equivalence surface are needed) with total memory 
usage of 12 GB.   The problem can be solved to 2.0E-2 
precision with 149 iterations on a Dell Precision 690 
with Intel XEON 3 GHz computer. 

 

 

 
Figure 3.  Multi-scale simulation of an XM antenna on a car, 
where the radiation pattern can be calculated. 

 
Figure 4.  A large antenna array can be broken into tiny pieces 
using EPA allowing a large problem to be solved. 

4  AUGMENTED ELECTRIC FIELD INTEGRAL 
EQUATION 

Recently, we have developed an augmented electric 
field integral equation (A-EFIE) for low-frequency 
electromagnetics problems [5,6].  It reformulates the 
mixed potential integral equation to be in a generalized 
saddle-point form by explicitly enforcing the current 
continuity equation and including the charge as 
additional unknowns [7,8].  We solved the final dense 
matrix equation using iterative methods, accelerated 
the matrix-vector product with mixed-form fast 
multipole algorithm [9], and developed an efficient 
constraint preconditioner for fast convergence.  This 
technique avoids the complexity of the conventional 
loop-tree decomposition method and solves 
complicated electromagnetic problems with greatly 
enhanced performance.   

In Figure 5, we show the simulation of a spiral 
inductor with four different levels of mesh density. 
Low frequency breakdown is usually accompanied by 
non-convergence of iterative methods.   The four A-
EFIE simulations show consistent convergence as the 
mesh size decreases and the number of unknowns 
increases.   They all give the same inductance value at 
0.62 nH, which agrees with the loop-tree 
decomposition method. 

The simulation of a full package shown in Figure 6 
demonstrates the great performance of the A-EFIE 
method.  It is a complicated real-world problem with 
over one million unknowns.   It can be solved in about 
1.5 hours on a 3 GHz single CPU desktop computer 
using 6.2 GB memory. 
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Figure 5.  Simulation of a spiral inductor with increasing mesh 
density with no sign of low-frequency breakdown. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. A full package simulation. There are four layers and 
222 nets.  Surface electric current distribution on the full 
package is in dB scale. Unit: A/m. The discretization has 1 007 
691 inner edges. Geometry unit: (top) The close-up of the 
current is around the excitation. (bottom) The iteration history 
is shown. GMRES reduces the residual error to 1.E-3 with 134 
iterations. 

        

 

Recently, we have improved the A-EFIE using the 
vector addition theorem.  This can result in 25% 
savings in memory when solving low-frequency 
problems, and at the same time, prevent the onset of 
low-frequency breakdown [10] (see Table 0).   The A-
EFIE concept has also been extended to the layered 
medium Green’s function approach [11]. 
 

 
Table 0 shows the main memory usage and the computational 
cost of the VFMA with vector addition theorem  and the LF-
FMA for solving A-EFIE in the full package simulation. 

 

Figure 7.  The use of A-EPA with A-EFIE for a low-frequency 
scattering problem. 

 

 
Figure 8.  Total current for a 1000 wavelength strip using N=30 
nodes, and a minimally-varying MOM.  The numerical solution 
agrees with GTD away from the strip edges, where GTD breaks 
down.  The table shows the frequency independence of the run-
times. 

We have also developed an augmented EPA (A-EPA) 
with A-EFIE to allow the solution of really low 
frequency problems (see Figure 7). 
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Figure 9.  Frequency independent calculation of a sphere 
scattering solution (left) a 5 wavelength sphere, (right) a 500 
wavelength sphere. 

5     SHORT-WAVELENGTH PROBLEMS 

The other extreme of multi-scale problems is the short-
wavelength problems where the size of the scatterer is 
very much larger than the wavelength.   This problem 
has been addressed by many researchers in the 
mathematics community [12,13,14].   In a numerical 
method based on the method of moments [16,17], the 
computer time increases with frequency.  Even though 
very large problems have been solved by numerical 
methods [18,19], they involve the use of 
supercomputers. However, the physics of these 
problems necessitate that the solution method should 
be frequency independent for short wavelengths. 
    Recently, we have shown that the scattering solution 
of a strip using a frequency independent technique 
[20].   The scattering solution of a sphere can also be 
calculated in a frequency independent manner [21]. 

6 CONCLUSIONS 

Computational electromagnetics serves to produce 
new simulation tools for next-generation engineering 
design and prototyping.  Its new direction lies in its 
ability to perform multi-physics and multi-scale 
calculations.  Computational electromagnetics will 
augment traditional pencil and paper calculations.      
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