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An Augmented Electric Field Integral Equation for
Layered Medium Green’s Function

Yongpin P. Chen, Student Member, IEEE, Lijun Jiang, Member, IEEE, Zhi-Guo Qian, Member, IEEE, and
Weng Cho Chew, Fellow, IEEE

Abstract—This paper proposes an augmented electric field inte-
gral equation (A-EFIE) for layered medium Green’s function. The
newly developed matrix-friendly formulation of layered medium
Green’s function is applied in this method. By separating charge
as extra unknown list, and enforcing the current continuity equa-
tion, the traditional EFIE can be cast into a generalized saddle-
point system. Frequency scaling for the matrix-friendly formula-
tion is analyzed when frequency tends to zero. Rank deficiency
and the charge neutrality enforcement of the A-EFIE for layered
medium Green’s function is discussed in detail. The electrostatic
limit of the A-EFIE is also analyzed. Without any topological loop-
searching algorithm, electrically small conducting structures em-
bedded in a general layered medium can be simulated by using this
new A-EFIE formulation. Several numerical results are presented
to validate this method at the end of this paper.

Index Terms—Augmented electric field integral equation, dyadic
Green’s function for layered medium, low frequency.

I. INTRODUCTION

OMPUTATIONAL electromagnetics becomes indis-

pensable as a CAD methodology in various electrical
engineering applications, such as in integrated circuit and
wireless communication device. The operating frequency of
the electrical systems keeps on increasing to several gigahertz,
meanwhile fabrication process has achieved nanoscale. Hence,
a broadband simulation tool is badly needed for capturing
circuit physics of the tiny structures as well as wave physics
for the whole package. Unfortunately, the commonly used
electric field integral equation (EFIE) method solved by the
method of moments (MoM) [1] with the Rao-Wilton-Glisson
(RWGQ) basis function [2] suffers from a “low frequency break-
down” problem, where vector potential gradually looses its
significance compared with the scalar potential part when the
frequency decreases, and the EFIE operator becomes singular
[3]. Various approaches have been proposed to overcome this
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problem in the last few years. One of the most popular remedies
is the loop-tree or loop-star decomposition [4], [5], where the
solenoidal and irrotational components of the unknown current
can be separated due to the quasi-Helmholtz decomposition
(also known as Hodge decomposition), to capture inductance
physics and capacitance physics when the frequency tends to
zero. However, even after frequency normalization, the matrix
is still ill-conditioned. Preconditioning is necessary to improve
the convergence when iterative solvers are applied. Several
effective preconditioners have been proposed, either based
on the basis-rearrangement, where the favorable property of
electrostatic problems is utilized [6], or based on the near-field
interactions, where the incomplete factorization with a heuristic
drop strategy is applied [7]. By using the Calderé6n identity and
the dual basis or Buffa-Christiansen basis function [8], [9], a
more effective preconditioner has been constructed [10]-[12].
The loop-tree or loop-star method has also been implemented
with the layered medium Green’s function [13]-[16], which is
more versatile in the simulation of printed antenna and planarly
integrated circuit [17]-[19].

However, one big issue associated with the loop-tree or loop-
star method is the loop-search process. It is a bottleneck for com-
plicated interconnecting geometries with increasing number of
unknowns, where many entangle global loops may exist. Sit-
uation becomes even worse when layered medium with con-
ducting ground plane is involved, where extra implicit global
loops are introduced because of the vias. To avoid the loop-
search process, the idea of separating current and charge to con-
struct a stable formulation has been studied recently. The current
and charge integral equation (CCIE) method [20] puts charges
into the extra unknown list and manipulates the equation system
to be of the second kind. While in the separated potential integral
equation (SPIE) method [21], the scalar potential is included as
the unknowns, where resistive loss and dielectric loss are in-
troduced to flatten the condition number when the frequency is
low. In the recent developed augmented electric field integral
equation (A-EFIE) method [22], [23], the similar idea of sepa-
rating current and charge as independent unknowns is applied.
By enforcing the current continuity equation explicitly and im-
plementing a proper frequency scaling, the EFIE can be cast
into a generalized saddle point system [24]. With the help of
a constraint preconditioner for the saddle point system and the
mixed-form fast multipole algorithm, a real package problem
with more than one million unknowns has been successfully
solved on a personal computer [23].

In this paper, we extend the A-EFIE method into the lay-
ered medium problem, to make it applicable for simulating

0018-926X/$26.00 © 2010 IEEE
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structures embedded in a general layered substrate. The ma-
trix-friendly layered medium Green’s function [15], [16] is
applied to achieve the A-EFIE formulation. First, the A-EFIE
formulation for free space Green’s function is reviewed. Then,
the frequency scaling is analyzed for both lossless and lossy
media and the corresponding A-EFIE is set up for layered
medium. Next, the rank deficiency and the necessity of en-
forcing charge neutrality condition is discussed in detail in the
context of layered medium. After that, the electrostatic limit of
the A-EFIE is analyzed to show the consistency with the static
solver. Finally, several numerical examples are presented to
validate this method.

II. THE AUGMENTED EFIE FORMULA FOR FREE SPACE
GREEN’S FUNCTION

For a conducting object illuminated by an external excitation,
electric current will be induced on the surface. This current will
then generate an electric field that exactly cancels the incident
electric field inside the object and will yield a scattered field in
the outside region due to the extinction theorem [3]. The electric
field integral equation (EFIE) can then be derived as

t-L(r,t")I(r') = —t-E(r) 1)

where the operator £ connects the source current and the scat-
tered field via the free space dyadic Green’s function

L(r,x)I(x') =iwpe(G(r,r'),I(r'))
— oo / d'G(r,r') - I(r) Q)

_ = VV
G(I‘.,I‘I) = <I + ?) g(r7rl) (3)
0
here the scalar Green’s function g(r,r’) is the solution to the
scalar Helmholtz wave equation with a point source

etko [r—r’|

g(r,1’) “)

- drc|lr — 1’|’
To solve the EFIE in (1), the induced current J(r’) can be ex-
panded by using the RWG basis function [2] defined on an ad-
jacent triangular patch pair

"
P;
247 re’y

O 5)
0, ' otherwise

where A is the area of the two triangles associated with the ith
basis, and the pfb is the vector pointing to a point r from the two
vertices. Here, the function is normalized by its edge length for
convenience. The surface divergence can then be written as

Alfr re T11+
Ve fi(r) =4 - L ren; ©)

0, otherwise.

After applying the Galerkin procedure [1], the EFIE can be con-
verted into a matrix system

Z-1=V (N

with

Z = ikgnoA + 2§ ®)
'L]C()

here 7 is the free space wave impedance and kg is the wave
number. The A and S correspond to the magnetic vector poten-
tial and electric scalar potential

[A]i = (£;(x), g(r,r'), £:i(r")) )
[Slji =(V - £;(r), g(r,x"), V' - £;(r')). (10)

From (8)—(10), we can see that the vector potential block and
the scalar potential one are imbalanced when the frequency is
low, namely k¢ — 0, since they are in different frequency order.
The operator £ becomes singular because any divergence-free
current is a solution to the EFIE in the quasi-static limit,

S-I~0. 1D
To balance the system, the charge can be separated and added
into the unknown list to make the system stable in an augmented
fashion [22], [23]. We define the normalized pulse basis function
on each triangular patch as

1

Pz’(r):{A_f v el

. 12
0, otherwise (12)

If further defining a patch-to-patch scalar potential matrix as

[Plji = (p;(r). g(r,r'), pi(x”))

we can obtain the relationship between the patch-pair based (in
terms of divergence of RWG basis) scalar potential matrix and
the patch-based one

13)

S=DT.-P-D (14)

where the incidence matrix D relates the domain of the RWG
basis and the patch basis,

_ 1, Patch j is the positive part of RWG ¢
[D];; = { —1, Patch j is the negative part of RWG ¢ (15)
0, otherwise.
Due to the current continuity equation, we have

where ¢ is the light speed in vacuum and p is the charge un-
knowns. Substituting the above equations into the EFIE matrix
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equation, and enforcing the current continuity equation explic-
itly, we can arrive at the following augmented-EFIE (A-EFIE)
system

A DT.P] [iked no 'V

= 9 |- = . a7

D kgl cop 0
This equation is the generalized saddle point system with the
lower right block nearly equals to zero and various methods can
be applied to solve this problem efficiently [24].

III. THE AUGMENTED EFIE FORMULA FOR LAYERED MEDIUM
GREEN’S FUNCTION

A. The Dyadic Green’s Function for Layered Medium

In a planarly layered medium, the dyadic Green’s function
has no closed-form spatial domain solution, it can only be ex-
pressed as an infinite integral (Sommerfeld integral). Various
approaches have been developed to derive the layered medium
Green’s function, for instance, transmission line analog [13],
Hertz potential approach [14], E.-H, formulation [25], and
vector wave formula [26]. Here, we apply the last one since it
can be cast into a matrix-friendly form [15], [16], which has the
singularity with the lowest order. The dyadic Green’s function
takes the form of

G(r.r') = (V x 2)(V' x 2)g" " (r,1')

k2 (VX Vx2)(V xV x2)g"™(r,r) (18)
where k2, = w?e, jim, m is the index of the layer where source
triangle resides and n for observation layer. The g*(r,r’) is
expressed as a Sommerfeld integral,

i (T dk,
A /0 Tz by Jo(kop)

where F*(k,, z,2') is the propagation factor [26] in z direc-
tion for a given k,, and o represents TE or TM polarization. In
moment method implementation, the matrix-friendly formula is
much more preferred, where the dyadic Green’s function is di-
vided into pieces and incorporated into the matrix elements

g”(r}r’) = “(k‘mz,z') (19)

Z = iwpn{Z°° + 777 + 7 + 77> + 7%} (20)
where
[Z77]ji = (£s(x), gss (v, 1) £is(r)) 1)
(277 = (2 £5(x), g22(r, 1), 2 £i(x")) (22)
(Z7]ji = = (2-£(x),0:, (r,"), V' - £i(r)) (23)
[Z%]ji = = (V- £i(r), g2 (r. 1)) 2 £i()) (24
[Z ]j’i _< 'fj( )7g¢>(r7r)7vl'fi( ,) (25)
with the Green’s function components as
gsa (1) = kg™ (r, ') (26)

g--(r, 1) = /(u',ZnngTA/j(r7 r') — 8zazngE(r, ) (27

go (r,1) = P20 g™ (2, 1') £ 0.9TE(r,1')(28)
fim

G (r,7') = 209" (2, ) + 09" F(r,7)) (29
azaz’

9o (r,1') = —5=—g" M (x,x') = g"F(r,1). (30)

B. Frequency Scaling

Since the primary (direct) term can be analyzed in the similar
way as in free space, only secondary (reflected or transmitted)
terms are considered in this section. We first assume that the
layered medium is lossless. For general case, namely €; # ¢;
and p; # pj, whenw — 0, k;; — k), the frequency scaling of
the Fresnel reflection coefficient is

_ pikiz —pikjz _ pj —pi

= = ~ O(W°
pikiz +pikj=  p;+pi @

i (31)
where p = p for TE wave and p = € for TM wave. Then we can
get the frequency scaling for other quantities:

Rij~ 0, My~O0W’), Tnn~0w’ (32
where R, M and T can be found in [26]. Then the frequency
scaling for the propagation factor is

F(ky,2,2") ~ Ow°). (33)

Finally the frequency scaling for the matrix element in (21)—(25)
is
77 ~0(WY), 277 ~ O(W"), Z7' ~ O("),

77 ~0(w°), Z% ~ O(w™?). (34)

We can separate the matrix into two parts according to the fre-
quency scaling

A =iy [2°° + 277 + 27 + 27 35)
S K Ko 7. (36)
Enr
So that we can have
— . — /]’IO —
7 = ZkOUOA + —S (37)
’Lk‘()
where
A ~O0W%, S~O0W° (38)

Equation (37) has the same form as (8) in free space, which

allows us to augment the EFIE in a similar fashion as in (17).
Since most material is non-magnetic, namely p; = p;, we

discuss this situation separately. The frequency scaling of the
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Fresnel reflection coefficient for TE wave is an high order term
of frequency,

e _ Mikiz — ik ki — k.

Tr = = ~ O(w?). 39
ik + pikys o kiz + ke @ 59
Then we have
RZT]E ~ O(w?). (40)
However, we still have
MLE ~ 0", TELE ~ O(w°), (41)

Notice the fact that except for the Z**, other four terms in
(22)—(25) consist of TE as well as TM wave, and the TM part
is still on O(w®). This means that the frequency scaling for
these four terms in (34) are still valid. By careful dimensional
analysis, we can show that even for 755, the leading order term
is still O(w?). In a word, for non-magnetic material, (34)—(38)
are also valid.

Dielectric loss and conductor loss can be introduced to al-
leviate the low frequency breakdown in free space [21]. For a
structure embedded in a layered medium, if we introduce di-
electric loss to each layer, since the equivalent permittivity is

1o

€ =€+ — (42)
Wep
the frequency scaling of the Z; becomes
Z¢ ~O(w™) (43)
so the scalar potential matrix becomes
S ~ O(wh). (44)
The A-EFIE can then take the alternative form
é (LkO)_lD:F ! P . J _ (ikOUO)_IV (45)
D —ikoI Cop - 0 ’

C. Consistency Validation

We discuss two extreme cases to analyze the consistency of
the A-EFIE for layered medium Green’s function. One with ho-
mogeneous layers (free space) and the other with perfect elec-
trical conductor (PEC) layer (half space), both of which have
closed form Green’s functions.

1) Free Space: In free space, the EFIE can be separated into
two parts, the vector potential part and the scalar potential part,
both of which are scalar problems with scalar Green’s function,
because of the homogeneity of the medium, shown in (7)—(10).
However, in the layered medium, the response of a dipole is po-
larization dependent. A vertical electric dipole can only gen-
erate a TM wave, while a horizontal electric dipole generates
TE as well as TM waves. The polarization dependency leads to

the difficulty in defining a uniform scalar potential. In the ma-
trix friendly formula, we can see Z** and Z** manifest the dif-
ferent response of a horizontal and a vertical dipole in a layered
medium. If we asymptotically make the inhomogeneity disap-
pear, namely, make €,,,, — 1 and p,,,, — 1 for each layer, and
applying the Sommerfeld identity

(46)

/ Z oo kP ik~|z—z’|
g(r,r') dk, -+ Jo(k,p)e'™
Jo

T 4r k.
the Z** and Z37 recover the polarization independent vector po-
tential in (9). Similar situation holds for the Z?, it goes back
to the scalar potential part in (10) when removing the inho-
mogeneity. The physical meanings of the remaining two terms
Z*! and Z*? are ambiguous due to the lack of exact definition
of scalar potential. There is no correspondence in free space,
since the TE and TM waves cancel each other when the layered
medium degrades into a free space. By appearance, we can in-
terpret it as the cross interaction between charge and the vertical
current. According to their same frequency scaling with Z** and
Z**, we can group them together to obtain the layered medium
A-EFIE, as is done in (35).

2) Half Space With PEC Layer: For a half space with a PEC
layer, the image method can be applied and the dyadic Green’s
function can be expressed in a closed form [27]

~ = 1

G(r,r')= <I— FVVI> [g(r,r") — gi(r,x")] + 222g;(r,2")
’ 7)

where ¢(r,r’) and g;(r,r”’) is the free space scalar Green’s

function with real source point r’ and image source point r”/,
with A and S defined as

[A]Jt = <f] (I‘)7 ‘(](I'7 rl) - gi(r7 I‘”)7 fi (Tl»
+2(2-£(r), gi(r,x"), 2 - £ (1)) (48)
[S]]Z = <V ’ fj(r)7 g(I‘7 rl) - gi(r7 IJ/)? V. fz<r/>> 49)

where we assume the interface is at z = 0, so v’ = (', 1/, 2'),
and v’ = (2',9',—2"). Notice the fact that RT¥ = —1 and
RTM = 1 at the interface in the propagation factor F'(k,, z, 2'),
we can reproduce (48) and (49) by our general A-EFIE formula,
with the help of Sommerfeld identity.

Although the terms Z*! and Z*? cannot be validated by this
two cases, we can show their significance by numerical ex-
amples, where vertical structure exists in a dielectric layered
medium, and the two terms are always there with nonzero value.

IV. CHARGE NEUTRALITY ISSUE

Charge neutrality enforcement is very important in the
A-EFIE for low-frequency problems, as stated in [23]. The
motivation of enforcing the charge neutrality is because of the
rank deficiency of the A-EFIE. For the A-EFIE shown in (17),
the upper block is exactly the same as the traditional EFIE ex-
cept that the scalar potential part is expressed in terms of patch
basis and charge is separated as a set of independent unknowns.
The lower block constraints the current continuity condition
to make the augmented system solvable. However, rank defi-
ciency exists in the A-EFIE matrix, due to the definition of the
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incidence matrix D. Here, k2 is an eigenvalue of the A-EFIE
and it tends to zero finally when the frequency goes to DC [23].
Usually, the deflation method [28] can be applied to remove
the smallest eigenvalue, for example, in the CCIE Formula
[20]. Motivated by the basis rearrangement preconditioner in
the loop-tree decomposition [6], we can also apply the charge
neutrality enforcement to remedy this problem [23]. This is
driven by the physical observation of the problem, and can be
easily extended to different layered medium problems.

We discuss this issue in the context of layered medium. If it is
backed by a conducting ground plane, which is a common situ-
ation in the circuit problems, it acts as a “‘charge bath” and ab-
sorbs the extra charge of the structure, so we should distinguish
situations whether there is a via connected to the ground in some
parts of the structure. As will be shown in the following, the
condition number is always bounded when the frequency goes
to DC, by properly enforcing the charge neutrality condition.

A. Structures Not Connected to a Ground Plane

If the structure is not connected to the “charge bath”, the total
charge is always neutral. This condition shall be enforced when
in low frequency domain due to the rank deficiency. By def-
inition of the RWG basis, the matrix D is linearly dependent
or singular. It is evident that the lower block sub-matrix of the
A-EFIE is rank deficient when the frequency is low (kg — 0). It
is necessary to enforce the charge neutrality condition to make
the lower block with full rank.

Two transform matrices can be introduced to fulfill the
charge neutrality enforcement [23], and the final A-EFIE
system becomes:

A DT.P-B] [iked] [n'V
FD :|.|:COPT:|_|: 0 (50)

with the forward and backward transform as

pr=F-p. p=B p, (51)

where p, is the reduced charge unknowns and the I, is the re-
duced identity matrix.

A rectangular loop embedded in a seven-layer medium is
shown in Fig. 1, with its layer parameters specified in the figure.
The condition numbers versus frequency are demonstrated in
Fig. 2. we can see that without charge neutrality enforcement,
the condition number grows unboundedly when decreasing the
frequency, it increases in the order of 1/k2 because of the right
lower block. The eigenvalue distribution of the A-EFIE matrix
at f = 1 Hz is shown in Fig. 3. After the charge neutrality en-
forcement, the smallest eigenvalue has been removed away from
the origin. We can also observe that when frequency increases,
however, the lower-right block is an identity matrix scaled by
k2, thus the lower block is no longer singular and such enforce-
ment is no longer necessary.

B. Structures Connected to a Ground Plane

In this case, the charge neutrality condition cannot be guaran-
teed since the “charge bath” absorbs the extra charge. The inci-
dence matrix D is no longer singular. In this situation, no special

£,=2.6 Deltq gap 5 hy =10
TZ s =42 ] h, = T
X py=6 hy =20 y
£,=4.2 h, =5
£,=26 0 . h=l0 s

g =1

Fig. 1. The geometrical structure of the loop inductor embedded in a seven-
layer medium, unit: mm. The central layer is a magnetic material. A delta gap
excitation is applied at the center of the top arm.

Condition number

10 10° 10* 10 10°
Frequency (Hz)
Fig. 2. The condition number versus frequency for the rectangular loop. The

condition number is unbounded when decreasing the frequency. Charge neu-
trality enforcement (CNE) makes the condition number constant.

-6

x 10

3l - With CNE
O Without CNE

"
o
3 2f
©
>
c
& 1r
@
k]
¢ OF e} o)} @O CED []
3
g -1y
£
&
E2f
_.3 s
. . . . | | | . . )
0 1 2 3 4 5 6 7 8
Real part of eigenvalues X107

Fig. 3. The eigenvalue distribution for the rectangular loop at 1 Hz. The
smallest eigenvalue is removed away from the origin after the charge neutrality
enforcement (CNE).

treatment is needed since the A-EFIE system is with full rank.
For a half rectangular loop connected to the ground plane shown
in Fig. 4, the condition number versus frequency is shown in
Fig. 5. Since the A-FEIE matrix is no longer singular because of
the ground plane, the condition number remains constant when
decreasing the frequency without any special treatment.

Here, the forward and backward transform matrices become
the identity matrix in this situation

F=B-=1 (52)
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g =1
, £.=26 Delta gap 5le h =10 AZ
e -42 g m=5_ |
£ =6 m=10 &
/S S/ S S
PEC ground |l 0 —»{5|e—

Fig. 4. The geometrical model of the half loop embedded in a five-layer
medium (including the PEC layer), unit: mm. A delta gap excitation is applied
at the center of the top arm.

3.04

3.0381 : : b

3.0367 : : 9

3.034F g

Condition number

3.032 : i

—©— Without CNE

3.03 = = :
10 10 10 10
Frequency (Hz)

Fig. 5. The condition number versus frequency for the half loop. Since it is
connected to the ground plane, charge neutrality cannot be guaranteed. The con-
dition number is bounded when decreasing the frequency without any special
treatment.

This observation can be used as a guideline when dealing with
complex structures. For a structure with s independent surfaces,
each with py, triangular patches, ; inner edges and g;, ground
edges, k = 1,2...s. If there are m surfaces connected to the
ground plane, then the total number of unknowns is

N = (ir+gi +pr) = m. (53)

k=1

One should note that though the number of unknowns in A-EFIE
increases much compared to the loop-tree decomposition, where
the number of unknowns is the same as the number of RWG
basis, the memory requirement increases marginally since all
transformation matrices such as D, F and B are all sparse and
consume marginal memory when iterative solver is applied.

V. ELECTROSTATIC LIMIT

In the electrostatic limit, the electric potential is expressed by
the following boundary value problem [3]

V?¢ =s(r) (54)
$(r)=0 res (55)

and the integral equation becomes
(Gs(r,1'),0(r)) = —cogo(r) T €S (56)

1000

=1000

y (mm)

Fig. 6. The geometrical model of the circular parallel plate capacitor, with a
dielectric layer (¢, = 2.65) inserted in between. A delta gap is applied at the
edge. The mesh is refined to capture the fringing effect.

where o is the surface charge density, G (r,r’) is the static lay-
ered medium Green’s function [30] and ¢ is the potential gen-
erated by the source s(r). In this limit, a typical problem is the
parallel plate capacitor, shown in Fig. 6. Here we connect the
two plates with a narrow strip so that we can apply the electro-
dynamic analysis.

In this limit, the A-EIFE suffers from an inaccuracy problem,
even though the matrix is nonsingular, because the current is a
higher order term in frequency. To capture current accurate to
arbitrary order, the perturbation method should be applied [29].
We will show that the charge is always stable and describes the
electrostatic physics. In DC, the A-EFIE becomes

A N T . P . R ) _1
A; D" -P;-B . ikodJ _ | Mo Vv (57)
F-D 0 copr 0
where A and P, are matrix evaluated at k, = 0. For this

problem, the current J disappears, while the charge remains
constant,

J—0, p—ec (58)
Since the matrix is still full rank, we have unique solution. How-
ever, the current is no longer correct due to the finite numerical
precision. If we discard the 2kyJ term manually, we have

D”.P, - B.p, =¢V. (59)
It is shown that the electrostatic information is included in the
A-EFIE. In free space, it is straightforward to check that the
static Green’s function in (56) and (59) is the same one

Gt r') = ——

CArwlr — 1|’ (60)

In a layered medium, we will show the static form of the gen-
eral matrix-friendly Green’s function in P, in the appendix,
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10 , . :
10° | ]
€
5
@ 10° | .
(%]
o
©
]
T .
2 .
=l —*— A-EFIE| |
——LT
—5— EFIE
-6 . i i
10 0 ) 4 6 8
10 10 10 10 10

Frequency (Hz)

Fig.7. The inputreactance of the rectangular loop. A-EFIE agrees well with the
loop-tree (LT) decomposition, while the traditional EFIE breaks down quickly
when decreasing the frequency.

Input reactance (Ohm)
s

—*— A-EFIE

10 —&— EFIE 1
@ —©6— PEC halfspace
10_8 0 : 2 : 4 : 6 8

10 10 10 10 10

Frequency (Hz)

Fig. 8. The input reactance of the half loop. A-EFIE maintains the scale invari-
ance very well while the traditional EFIE breaks down quickly when decreasing
the frequency. Since the non-magnetic dielectric is transparent to the inductor,
a PEC half space model is applied to validate the results.

which agrees with that of [30] applied in the electrostatic anal-
ysis except for minor differences such as the layer index, con-
stant 1/4meq and the sign definition in the Fresnel reflection co-
efficient. Numerical results will be given to further validate our
statement in the next section.

VI. NUMERICAL RESULTS

Several numerical results are presented in this section. The
input reactance of the rectangular loop shown in Fig. 1 is cal-
culated, where the results are compared with the loop-tree (LT)
decomposition and traditional EFIE in Fig. 7. The EFIE breaks
down quickly when the frequency decreases, while the A-EFIE
is very stable and agrees very well with the loop-tree decomposi-
tion. We also calculate the input reactance of the half rectangular
loop mentioned above. Because it is connected to a conducting
ground plane, the current can flow along this half loop. The input
reactance is shown in Fig. 8 compared with traditional EFIE.
Similar phenomenon can be observed. Since non-magnetic di-
electric is transparent to the loop inductor, the PEC half space
model can be used to validate the result, which is also shown
in Fig. 8. Good agreement with the A-EFIE for general layered
medium can be observed. Finally, a circular parallel plate capac-
itor with radius of unit length (¢ = 1 m) is shown in Fig. 6 with

0.9} 1
o
;, 0.8% = = = B—O—2A—H
(¥}
[
s
s
g o7y 1
© —#%— A-EFIE |
] —s— A-EFIE Q| |
0.6 —o— static
—&— Analytic
05 ; ; . , )
10° 10’ 10> 10° 10* 10° 10°

Frequency (Hz)

Fig. 9. The capacitance of the circular parallel plate capacitor. A-EFIE I repre-
sents the capacitance extracted from current, while A-EFIE Q means the capac-
itance extracted from charge. The A-EFIE current suffers from an inaccuracy
problem while the A-EFIE charge is stable. The result agrees with the static
solver. Both are further validated by the analytic solution. When the frequency
is below 1 MHz, the relative error of A-EFIE Q is around 0.1%.

a dielectric layer inserted in between (¢, = 2.65). The distance
is set to be d/a = 0.1. The capacitance extracted from current
and charge and static solver are shown in Fig. 9. The current
suffers from an inaccuracy problem, as mentioned in last sec-
tion, while the charge is accurate and agrees with the static anal-
ysis. The analytic result from asymptotic expansion [31] is also
shown to validate the numerical results. In this example, when
the frequency is below 1 MHz, the relative error of the A-EFIE
with charge information is around 0.1%. If the frequency is in-
creased, wave physics begins to play a role and the parallel plate
is no longer a pure capacitor.

VII. CONCLUSION

An augmented EFIE for layered medium Green’s function
is developed in this paper. The frequency scaling is analyzed
for both lossless and lossy media. The rank deficiency of the
A-EFIE in layered media depends on if the charge neutrality
condition is satisfied. For independent structures, the enforce-
ment is necessary in the low frequency regime, while at mid-
frequencies, such implementation is no longer necessary. For
structures connected to the ground, the A-EFIE matrix is full
rank, and no special treatment is needed. The electrostatic limit
is analyzed and compared with the static formulation. Several
numerical results are presented to validate this method.

APPENDIX
ELECTROSTATIC LAYERED MEDIUM GREEN’S FUNCTION

In the electrostatic limit, the layered medium Green’s func-
tion shown in [30] can be derived from our general matrix-
friendly formulation

1
Gs(r'/rl) = - —azaz’gTN[(r7r/)

1 oo
= > / dAJo(Ap)e 27, (61)
0

dmen,

where the Green’s function is described by several images with
weight 2; and distance Z;.
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m = n: When m = n, there are one primary term and
four image terms

Qo=1,720=|z—-7] (62)
Q= — Ry 1My, Zy = —2dpy + 2/ + 2 (63)

Qo = — Runms1 My, Zo = 2dpy1 — 7' — 2 (64)

Q3 = Rt 1 Ronym—1 My Z3 = 2hp + 2/ — 2 (65)

Q= Rymi1 Ronn1 M, Zy = 2hp, — 2/ + 2. (66)

m < n: When m < n, there are four image terms

Oy =T+ My, 7y = —2' + 2 (67)
Qo= — Ry 1T My, Zo = 2dpyy — 2/ — 2 (68)
Q= — R 1 T My, Z3 = —2d, + 2 + 2 (69)
Q=R 1Rnni1 Th My, Zy=—2dp+2dp 142" — 2.
(70)

m > n: When m > n, there are also four image terms

0 =T, Mm,lez’—z (71)
Qg_—Rnn 1 Mm,ZQ——Zd +Z + 2 (72)
Qg = — Rm m+1 M Z3 = 2dm+1 - Z —Zz (73)
Q4 = Rm,m—‘,—an,n—lTn;an; Z4 = 2dm+1_2dn_zl+z
(74)
where
- R; ., Rty jaoe~2 it
Riiy1= i1+ 1426 : (75)
L4 Ry ip1 Ry ipoe it
~ Rii1+ Ri 1 ge” i
R 1=— L+ fi1io2e (76)
14 R;i—1Ri_1,—0e 2 iz
~ 1
M,, = — (77)
1- Rm,m—lRm,m+16_2>\hm
n—1
Pt Ty (78)
jmm L= Rigr R jage™? i
m—1
T’r;n — ]+LJ (79)
1;[ - Ry, ]+1R]J 1em 2
hqj = di+1 — dL (80)
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