1,119 research outputs found

    Habitat preference of two sympatric coastal cetaceans in Langkawi, Malaysia, as determined by passive acoustic monitoring

    Get PDF
    Little is known about the ecology of the Indo-Pacific finless porpoise Neophocaena phocaenoides or the Indo-Pacific humpback dolphin Sousa chinensis in Southeast Asia. The present study describes the distribution and habitat preferences of these species around the Langkawi Archipelago of Malaysia. Vessel-based passive acoustic monitoring surveys were conducted 5 times between 2012 and 2013. Both species mainly preferred relatively shallow waters, especially on the east sides of the islands at <15 m depth. However, the species differed in number of detections and spatial distribution, preferred distance from shore, chlorophyll a concentration in the water where they resided, and season in which they were detected, indicating that they have different habitat preferences. The best spatial habitat model for the prediction of finless porpoise distribution included bathymetric depth and longitude. The distribution of finless porpoises was relatively stable around the islands and especially in the eastern waters, whereas humpback dolphins may only seasonally visit specific regions of the waters around the islands. Their detection sites were too patchy to enable distribution modeling. The results of this study provide baseline information that can facilitate conservation planning for these species according to their habitat preferences and core areas

    Development of Time- and Energy-Resolved Synchrotron-Radiation-Based Mössbauer Spectroscopy

    Get PDF
    14th International Conference on Synchrotron Radiation Instrumentation (SRI 2021) 28.03.2022 - 01.04.2022 OnlineSynchrotron-radiation based Mössbauer spectroscopy has become a useful technique capable for investigating various Mössbauer isotopes. For a typical experimental setup, the information associated with the pulse height (that is, energy) in an avalanche photodiode (APD) detector has not been used effectively. By using a system for simultaneous measurement system of time and energy associated with the APD signal, a system for the time- and energy-resolved Mössbauer spectroscopy has been developed. In this system, the pulse height information was converted to the time information through an amplitude-to-time converter applied to one of the divided signals from the APD. The corresponding time information was processed separately from another one of the divided signals. Both signals are recorded by a multi-channel scaler in an event-by-event data acquisition process. The velocity information from the Mössbauer transducer was also recorded as a tag for each signal event. Thus, the Mössbauer spectra with any time- and energy-window can be reconstructed after the data collection process. This system can be used for many purposes in time- and energy-resolved Mössbauer spectroscopy, and shows significant promise for use with other fast detectors and for various types of experiments

    AN EXPERIMENTAL AND MODELING STUDY OF ELECTROOSMOTIC BULK AND NEAR-WALL FLOWS IN TWO-DIMENSIONAL MICRO-AND NANOCHANNELS

    Get PDF
    ABSTRACT Electrokinetically driven flow of electrolyte solutions through micro-and nanochannels is of interest in microelectromechanical systems (MEMS) and nanotechnology applications. In this work, fully developed and steady electroosmotic flow (EOF) of dilute sodium tetraborate and sodium chloride aqueous solutions in a rectangular channel where the channel height h is comparable to its width W is examined. EOF is also studied under conditions of electric double layer (EDL) overlap, or λ/h ~ O(1), where λ is the Debye thickness, for very dilute solutions. The initial experimental data and model results are in very good agreement for dilute sodium tetraborate solutions. The experimental work uses the new nano-particle image velocimetry (nPIV) technique. Evanescent waves from the total internal reflection of light with a wavelength of 488 nm at a refractive index interface is used to illuminate 100 nm neutrally buoyant fluorescent particles in the near-wall region of the flow. The images of these tracer particles over time are processed to obtain the two components of the velocity field parallel to the wall in fully developed EOF of sodium tetraborate at concentrations up to 2 mM in fused quartz rectangular channels with height h up to 10 microns. The spatial resolution of these velocity field data along the dimension normal to the wall is about 100 nm, and the data are obtained within a distance of approximately 100 nm of the wall based upon the 1/e intensity point, or penetration depth. A set of equations modeling EOF in a long channel are solved where h/L &lt;&lt; 1, and L is the lengthscale along the flow direction. Unlike most previous models, this work does not use the Debye-Huckel approximation, nor does it assume symmetric boundary conditions. For the case where λ/h &lt;&lt; 1, analytical solutions for the velocity, potential and mole fractions are obtained using an asymptotic perturbation approach

    Dilution and clustering of Fe in the rutile phases of TiO2 and SnO2

    Get PDF
    ABSTRACT: Dilute magnetic semiconductors of Fe-doped SnO2 and TiO2 with the structure of rutile were prepared in forms of powder and thin films using the techniques of sol gel and pulsed-laser deposition. We present the results of measurement of vibrational density of states of Fe impurity dopants in these oxides and demonstrate the cases of dilution and clustering. The oxygen pressure during the film deposition was varied between 10−1 and 10−8 Torr. In TiO2 films made at 10−1 Torr, Fe is diluted, however, in films made at 10−8 Torr Fe is clustered. The case of true Fe dilution in SnO2 is also shown. In spite of larger mass defect for Fe in SnO2 than that for Fe in TiO2 the dilute Fe species probe the phonon states in SnO2 more faithfully than in TiO2. This result is understood in terms of the combined effect of mass defect and nearest-neighbor force-constant changes. The impurity modes are more pronounced in TiO2 than in SnO2 due to ca. 10% difference of the lattice cell volumes between these two rutile oxides

    Secondary-Structure Design of Proteins by a Backbone Torsion Energy

    Get PDF
    We propose a new backbone-torsion-energy term in the force field for protein systems. This torsion-energy term is represented by a double Fourier series in two variables, the backbone dihedral angles phi and psi. It gives a natural representation of the torsion energy in the Ramachandran space in the sense that any two-dimensional energy surface periodic in both phi and psi can be expanded by the double Fourier series. We can then easily control secondary-structure-forming tendencies by modifying the torsion-energy surface. For instance, we can increase/decrease the alpha-helix-forming-tendencies by lowering/raising the torsion-energy surface in the alpha-helix region and likewise increase/decrease the beta-sheet-forming tendencies by lowering/raising the surface in the beta-sheet region in the Ramachandran space. We applied our approach to AMBER parm94 and AMBER parm96 force fields and demonstrated that our modifications of the torsion-energy terms resulted in the expected changes of secondary-structure-forming-tendencies by performing folding simulations of alpha-helical and beta-hairpin peptides.Comment: 13 pages, (Revtex4), 5 figure
    corecore