1,099 research outputs found
Toxicological evaluation of precocene II isolated from Ageratum conyzoides L. (Asteraceae) in Sprague Dawley rats
Precocene II (6,7-dimethoxy-2,2-dimethyl-2-chromene) was the main constituent isolated from Ageratum conyzoides L. and reportedly possessed antifungal activity. The study investigated the isolation,purification and toxicological effects of precocene II from A. conyzoides in Sprague Dawley rats. Precocene II was isolated from the petroleum ether fraction of the plant and the structure was determined by  1H-,13C-,DEPT-NMR and MS spectral techniques. Three groups of eight rats per group were used for the study. While groups B and C were respectively administered with 25 and 50 mg/kg of precocene II in 0.25% CMC-Na for 11 days by gastric intubation, group A was administered with 0.25% CMC-Na and served as the control group. After the last treatment, animals were fasted overnight and on the 12th day, they were injected intravenously with 0.2 ml/kg body weight of phenobarbital. Animalswere subsequently dissected from the abdominal region; blood was collected from the pulmonary vein into EDTA anti-coagulated and non anti-coagulated tubes. The liver, kidney and spleen tissues wereextracted into separate bottles for histopathological examinations. Results from hematological study indicated that the white blood cell (WBC), red blood cell (RBC), plateletcrit (PCT) and mean corpuscular hemoglobin count (MCHC) were significantly higher across the treated group s. Biochemical result showed that serum glucose level was significantly reduced in the treated groups. No apparent damage was noticed in the liver, kidney and spleen tissues. The result therefore suggests that precocene II possesses hypoglycemic property and could alter some hematopoietic elements but was not toxic to the liver, kidney and spleen tissues
Complexation and coacervation of like-charged polyelectrolytes inspired by mussels
It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-p interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.113320Ysciescopu
Shining Emitter in a Stable Host: Design of Halide Perovskite Scintillators for X-ray Imaging from Commercial Concept
Halide perovskite (HP) nanocrystals (NCs) have recently shown great potential for X-ray detection and imaging. However, the practical application still has a long way to go with many technical requirements waiting to be fulfilled, including structure optimization, stability enhancement, and cost reduction. A design principle in this beginning stage is urgently needed but still lacking. Herein, with an βemitter-in-matrixβ principle refined from commercial scintillators, CsPbBr3@Cs4PbBr6 with emissive CsPbBr3 NCs embedded inside a solid-state Cs4PbBr6 host is subjected to X-ray sensing and imaging. The Cs4PbBr6 matrix not only enhances the attenuation of X-rays but also dramatically improves the stability of CsPbBr3 NCs. A favorable optical design with the Cs4PbBr6 matrix being transparent to the emission from CsPbBr3 NCs enables efficient light output. As a result, stable and sensitive scintillation response to X-ray signals is demonstrated with superior linearity and ultrahigh time resolution. In order to show the huge potential for practical applications, X-ray imaging using a large-area film (360 mm Γ 240 mm) by the blade-coating technique is carried out to obtain a high-quality image of interior structures invisible to the human eye. In addition to the above advantages in optics, CsPbBr3@Cs4PbBr6 also enjoys facile solution synthesis with large scalability, excellent repeatability, and low cost
Entanglement of single-photons and chiral phonons in atomically thin WSe
Quantum entanglement is a fundamental phenomenon which, on the one hand,
reveals deep connections between quantum mechanics, gravity and the space-time;
on the other hand, has practical applications as a key resource in quantum
information processing. While it is routinely achieved in photon-atom
ensembles, entanglement involving the solid-state or macroscopic objects
remains challenging albeit promising for both fundamental physics and
technological applications. Here, we report entanglement between collective,
chiral vibrations in two-dimensional (2D) WSe host --- chiral phonons (CPs)
--- and single-photons emitted from quantum dots (QDs) present in it. CPs which
carry angular momentum were recently observed in WSe and are a
distinguishing feature of the underlying honeycomb lattice. The entanglement
results from a "which-way" scattering process, involving an optical excitation
in a QD and doubly-degenerate CPs, which takes place via two indistinguishable
paths. Our unveiling of entanglement involving a macroscopic, collective
excitation together with strong interaction between CPs and QDs in 2D materials
opens up ways for phonon-driven entanglement of QDs and engineering chiral or
non-reciprocal interactions at the single-photon level
Holographic Superconductors
A holographic model of superconductors based on the action proposed by
Benini, Herzog, and Yarom [arXiv:1006.0731] is studied. This model has a
charged spin two field in an AdS black hole spacetime. Working in the probe
limit, the normalizable solution of the spin two field in the bulk gives rise
to a superconducting order parameter at the boundary of the AdS. We
calculate the fermion spectral function in this\ superconducting background and
confirm the existence of fermi arcs for non-vanishing Majorana couplings. By
changing the relative strength of the and condensations, the
position and the size of the fermi arcs are changed. When , the
spectrum becomes isotropic and the spectral function is s-wave like. By
changing the fermion mass, the fermi momentum is changed. We also calculate the
conductivity for these holographic superconductors where time reversal
symmetry has been broken spontaneously. A non-vanishing Hall conductivity is
obtained even without an external magnetic field.Comment: 24 pages,17 figures, Add more discussions on hall conductivity, two
new figures, Matched with published versio
Cell surface properties of Pseudomonas stutzeri in the process of diesel oil biodegradation
Pseudomonas stutzeri, isolated from crude oil-contaminated soil, was used to degrade diesel oil. Of three surfactants, 120Β mg rhamnolipids 1β1 significantly increased degradation of diesel oil giving 88% loss after 14Β days compared to 54% loss without the surfactant. The system with rhamnolipids was characterised by relatively high particle homogeneity. However, the addition of saponins to diesel oil caused the cells to aggregate (the polydispersity index: 0.542) and the biodegradation of diesel oil was only 46%. The cell yield was 0.22Β gΒ lβ1
Identification by Automated Screening of a Small Molecule that Selectively Eliminates Neural Stem Cells Derived from hESCs but Not Dopamine Neurons
BACKGROUND:We have previously described fundamental differences in the biology of stem cells as compared to other dividing cell populations. We reasoned therefore that a differential screen using US Food and Drug Administration (FDA)-approved compounds may identify either selective survival factors or specific toxins and may be useful for the therapeutically-driven manufacturing of cells in vitro and possibly in vivo. METHODOLOGY/PRINCIPAL FINDINGS:In this study we report on optimized methods for feeder-free culture of hESCs and hESC-derived neural stem cells (NSCs) to facilitate automated screening. We show that we are able to measure ATP as an indicator of metabolic activity in an automated screening assay. With this optimized platform we screened a collection of FDA-approved drugs to identify compounds that have differential toxicity to hESCs and their neural derivatives. Nine compounds were identified to be specifically toxic for NSCs to a greater extent than for hESCs. Six of these initial hits were retested and verified by large-scale cell culture to determine dose-responsive NSC toxicity. One of the compounds retested, amiodarone HCL, was further tested for possible effects on postmitotic neurons, a likely target for transplant therapy. Amiodarone HCL was found to be selectively toxic to NSCs but not to differentiated neurons or glial cells. Treated and untreated NSCs and neurons were then interrogated with global gene expression analysis to explore the mechanisms of action of amiodarone HCl. The gene expression analysis suggests that activation of cell-type specific cationic channels may underlie the toxicity of the drug. CONCLUSIONS/SIGNIFICANCE:In conclusion, we have developed a screening strategy that allows us to rapidly identify clinically approved drugs for use in a Chemistry, Manufacture and Control protocol that can be safely used to deplete unwanted contaminating precursor cells from a differentiated cell product. Our results also suggest that such a strategy is rich in the potential of identifying lineage specific reagents and provides additional evidence for the utility of stem cells in screening and discovery paradigms
Obstetric professionalsβ perceptions of non-invasive prenatal testing for Down syndrome: clinical usefulness compared with existing tests and ethical implications
Background: While non-invasive prenatal testing (NIPT) for fetal aneuploidy is commercially available in many countries, little is known about how obstetric professionals in non-Western populations perceive the clinical usefulness of NIPT in comparison with existing first-trimester combined screening (FTS) for Down syndrome (DS) or invasive prenatal diagnosis (IPD), or perceptions of their ethical concerns arising from the use of NIPT. Methods: A cross-sectional survey among 327 obstetric professionals (237 midwives, 90 obstetricians) in Hong Kong. Results: Compared to FTS, NIPT was believed to: provide more psychological benefits and enable earlier consideration of termination of pregnancy. Compared to IPD, NIPT was believed to: provide less psychological stress for high-risk women and more psychological assurance for low-risk women, and offer an advantage to detect chromosomal abnormalities earlier. Significant differences in perceived clinical usefulness were found by profession and healthcare sector: (1) obstetricians reported more certain views towards the usefulness of NIPT than midwives and (2) professionals in the public sector perceived less usefulness of NIPT than the private sector. Beliefs about earlier detection of DS using NIPT were associated with ethical concerns about increasing abortion. Participants believing that NIPT provided psychological assurance among low-risk women were less likely to be concerned about ethical issues relating to informed decision-making and pre-test consultation for NIPT. Conclusions: Our findings suggest the need for political debate initially on how to ensure pregnant women accessing public services are informed about commercially available more advanced technology, but also on the potential implementation of NIPT within public services to improve access and equity to DS screening services
Molecular Mechanisms of Fiber Differential Development between G. barbadense and G. hirsutum Revealed by Genetical Genomics
Cotton fiber qualities including length, strength and fineness are known to be controlled by genes affecting cell elongation and secondary cell wall (SCW) biosynthesis, but the molecular mechanisms that govern development of fiber traits are largely unknown. Here, we evaluated an interspecific backcrossed population from G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 for fiber characteristics in four-year environments under field conditions, and detected 12 quantitative trait loci (QTL) and QTL-by-environment interactions by multi-QTL joint analysis. Further analysis of fiber growth and gene expression between TM-1 and Hai7124 showed greater differences at 10 and 25 days post-anthesis (DPA). In this two period important for fiber performances, we integrated genome-wide expression profiling with linkage analysis using the same genetic materials and identified in total 916 expression QTL (eQTL) significantly (P<0.05) affecting the expression of 394 differential genes. Many positional cis-/trans-acting eQTL and eQTL hotspots were detected across the genome. By comparative mapping of eQTL and fiber QTL, a dataset of candidate genes affecting fiber qualities was generated. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed the major differential genes regulating fiber cell elongation or SCW synthesis. These data collectively support molecular mechanism for G. hirsutum and G. barbadense through differential gene regulation causing difference of fiber qualities. The down-regulated expression of abscisic acid (ABA) and ethylene signaling pathway genes and high-level and long-term expression of positive regulators including auxin and cell wall enzyme genes for fiber cell elongation at the fiber developmental transition stage may account for superior fiber qualities
AntEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm
<p>Abstract</p> <p>Background</p> <p>Epistatic interactions of multiple single nucleotide polymorphisms (SNPs) are now believed to affect individual susceptibility to common diseases. The detection of such interactions, however, is a challenging task in large scale association studies. Ant colony optimization (ACO) algorithms have been shown to be useful in detecting epistatic interactions.</p> <p>Findings</p> <p>AntEpiSeeker, a new two-stage ant colony optimization algorithm, has been developed for detecting epistasis in a case-control design. Based on some practical epistatic models, AntEpiSeeker has performed very well.</p> <p>Conclusions</p> <p>AntEpiSeeker is a powerful and efficient tool for large-scale association studies and can be downloaded from <url>http://nce.ads.uga.edu/~romdhane/AntEpiSeeker/index.html</url>.</p
- β¦