6 research outputs found

    Ultra high diluted arsenic reduces spore germination of Alternaria brassicicola and dark leaf spot in cauliflower

    Get PDF
    ABSTRACT A major problem in cauliflower crop is the fungus Alternaria brassicicola, which causes dark leaf spot on Brassicaceae family. The current use of copper salts in agriculture is questioned. In fact, these products present some disadvantages, connected mainly with their deposits in the soil and toxicity on plants. This work investigated the effects of arsenic treatments, in ultra high diluted form (UHD), prepared by a process of repeated dilution and succussion (shaking), through: 1) in vitro germination experiments, where spores of A. brassicicola were suspended in the treatments; 2) in planta experiments and 3) a field trial, where cauliflower plants infected by the fungus were sprayed with treatments. The results showed that ultra high dilutions of arsenic (where no more molecules of this substance are present) were effective in all the experiments, inhibiting spore germination by 60.0%, controlling fungal disease in in planta experiments (relative efficacy of 42.1%), and, in field trial, decreasing the mean infection level in cauliflower heads by 45.7% and 41.6% in artificially inoculated and naturally infected plants, respectively. This is the first study to demonstrate that ultra high dilutions effectively reduce in vitro spore germination and infection of A. brassicicola in cauliflower plants, both under controlled conditions and in the field. Our research is still very experimental, however, in light of the significant results obtained with ultra-diluted arsenic, and given that its extreme high dilution level precludes any toxicity or accumulation in the environment, the use of UHDs could be considered a potential and reliable approach for sustainable agriculture

    Cervical Lymph Nodes as a Selective Niche for Brucella during Oral Infections

    No full text
    International audienceCervical lymph nodes (CLN) are the first lymph nodes encountered by material taking the oral route. To study their role in orally acquired infections, we analyzed 307 patients of up to 14 years treated in the university clinic of Skopje, Macedonia, for brucellosis, a zoonotic bacterial disease frequently acquired by ingestion of contaminated dairy products. From these children, 36% had lymphadenopathy. Among orally infected children, lymphadenopathy with CLN being the only lymph nodes affected was significantly more frequent as compared to those infected by contact with animals (83% vs. 63%), suggesting a possible involvement of CLN during orally acquired human brucellosis. Using a murine model where bacteria are delivered into the oral cavity, we show that Brucella quickly and selectively colonize the CLN where they proliferate and persist over long periods of time for up to 50 days post-infection. A similar efficient though less specific drainage to CLN was found for Brucella, Salmonella typhimurium and fluorescent microspheres delivered by gavage, a pathway likely representing a mixed infection mode of intragastric and oral infection, suggesting a central pathway of drained material. Microspheres as well as bacteria drained to CLN predominately reside in cells expressing CD68 and no or low levels of CD11c. Even though no systemic response could be detected, Brucella induced a locally restricted inflammatory reaction with increased expression levels of interferon., interleukin (IL)-6, IL-12, granzyme B and a delayed induction of Nos2. Inflammation led to pronounced lymphadenopathy, infiltration of macrophages/monocytes expressing high levels of major histocompatibility complex II and to formation of epitheloid granulomas. Together, these results highlight the role of CLN in oral infections as both, an initial and efficient trap for bacterial invaders and as possible reservoir for chronic pathogens. They likewise cast a new light on the significance of oral routes for means of vaccination

    Syphilis: The Renaissance of an Old Disease with Oral Implications

    No full text
    Syphilis is caused by Treponema pallidum an anaerobic filamentous spirochete. In recent years, striking outbreaks have occurred in USA, Canada, Russia, China and some areas of Central and Eastern Europe. Main epidemiology changes reflect sex industry, sexual promiscuity, decreasing use of barrier protection (i.e. condoms) due to false sense of security that nowadays sexually transmitted diseases are curable and lack of pertinent knowledge. Considering that the initial presentation of syphilis may be the oral cavity, it is of great relevance to include this disease in the differential diagnosis of unusual oral ulcerations and white patches. Primary syphilis is a highly infectious disease in which inappropriate treatment may be apparently curative while the patient remains highly infectious. It is then of pivotal importance that clinicians maintain a high clinical index of suspicion. At the present time, clinical-pathologic correlation together with serologic studies remain essential in establishing the diagnosis of syphilis
    corecore