107 research outputs found

    TSPY is a cancer testis antigen expressed in human hepatocellular carcinoma

    Get PDF
    In search for genes associated with hepatocellular carcinoma (HCC) by cDNA microarray, we found that the transcription of TSPY, ‘testis-specific protein Y-encoded', was upregulated in HCC. Investigation of a broad spectrum of normal and malignant tissues by RT–PCR revealed the TSPY transcript selectively expressed in normal testis, different histological types of human neoplastic tissues, and tumour cell lines. The expression of TSPY in cancer cells was further confirmed by in situ hybridisation. Indirect immunofluorescence microscopy analysis showed that TSPY was localised mainly in the cytoplasm of transiently transfected cells. Testis-specific protein Y-encoded was detected in 50% (16 of 32) of well- and moderately differentiated HCC patients, in 16% (four of 25) of poorly differentiated HCC patients, and in 5% (one of 19) of renal cell cancer patients. A serological survey revealed that 6.6% (seven of 106) HCC patients had anti-TSPY antibody response, demonstrating the immunogenicity of TSPY in humans. In conclusion, these data suggest that TSPY is a novel cancer/testis (CT) antigen and may be a potential candidate in vaccine strategy for immunotherapy in HCC patients

    Anatomical and Functional Deficits in Patients with Amnestic Mild Cognitive Impairment

    Get PDF
    Background: Anatomical and functional deficits have been studied in patients with amnestic mild cognitive impairment (MCI). However, it is unclear whether and how the anatomical deficits are related to the functional alterations. Present study aims to characterize the association between anatomical and functional deficits in MCI patients. Methods: Seventeen amnestic MCI patients and 18 healthy aging controls were scanned using a T1 Weighted MPRAGE sequence and a gradient-echo echo-planar imaging sequence. Clinical severity of MCI patients was evaluated by usin

    Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics

    Get PDF
    Novel approaches towards cancer therapy are urgently needed. One approach might be to target ion channels mediating CaÂČ+ entry because of the critical roles played by CaÂČ+ in many cell types, including cancer cells. There are several types of these ion channels, but here we address those formed by assembly of transient receptor potential canonical (TRPC) proteins, particularly those which involve two closely related members of the family: TRPC4 and TRPC5. We focus on these proteins because recent studies point to roles in important aspects of cancer: drug resistance, transmission of drug resistance through extracellular vesicles, tumour vascularisation, and evoked cancer cell death by the TRPC4/5 channel activator (−)-englerin A. We conclude that further research is both justified and necessary before these proteins can be considered as strong targets for anti-cancer cell drug discovery programmes. It is nevertheless already apparent that inhibitors of the channels would be unlikely to cause significant adverse effects, but, rather, have other effects which may be beneficial in the context of cancer and chemotherapy, potentially including suppression of innate fear, visceral pain and pathological cardiac remodelling

    CEO Profile and Earnings Quality

    Get PDF
    This paper introduces the PSCORE, which aggregates nine personal characteristics of chief executive officers (CEOs), to signal the quality of earnings. The PSCORE is a composite score based on publicly available data on CEOs. The study reports strong positive relationships between the PSCORE and two different proxies for earnings quality, (i) discretionary accruals and (ii) financial statement errors, measured by deviations of the first digits of figures reported in financial statements from those expected by Benford’s Law. Further analyses indicate that the relationships between the PSCORE and the proxies for earnings quality become more pronounced when CEOs have high equity-based compensation incentives. The findings have some implications for practitioners

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    A stabilizer-free and organic solvent-free method to prepare 10-hydroxycamptothecin nanocrystals: in vitro and in vivo evaluation

    No full text
    Xiaofeng Yang,1 Yingying Liu,1,2 Yanna Zhao,1 Meihua Han,1 Yifei Guo,1 Haixue Kuang,2 Xiangtao Wang1 1Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 2School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, People’s Republic of China Abstract: 10-Hydroxycamptothecin (10-HCPT) is a promising anticancer drug with a wide spectrum of antitumor activities. Due to its poor solubility, the carboxylate form that shows high water solubility but minimal anticancer activity and pharmacokinetic defects is used in the marketed 10-HCPT injections, resulting in its limited clinical application. To develop a simple, safe, and highly effective drug delivery system, a modified acid–base microprecipitation combined with a high-pressure homogenization technique was adopted to prepare 10-HCPT nanocrystals. Neither organic solvents nor stabilizers were employed throughout the preparation process. The in vitro and in vivo performances of the resulting10-HCPT nanocrystals were investigated systematically. The nanocrystals were spherical with a small size of ~130 nm, and the actual drug-loading content was as high as 75%. The nanocrystals displayed a sustained release pattern and were proven to have a higher cell uptake and antiproliferative activity than the 10-HCPT injections. The 10-HCPT nanocrystals also showed enhanced drug accumulation in tumors and better anticancer efficacy in 4T1-bearing mice. In summary, the 10-HCPT nanocrystals prepared in this study seem to be a promising delivery system for a new form of 10-HCPT dosages. Keywords: 10-hydroxycamptothecin, drug delivery, poloxamer 188, high drug payload, 4T1 cell
    • 

    corecore