778 research outputs found

    Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    Get PDF
    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the twodimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters

    Successful bone marrow transplantation in a patient with Diamond-Blackfan anemia with co-existing Duchenne muscular dystrophy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Diamond-Blackfan anemia and Duchenne muscular dystrophy are two rare congenital anomalies. Both anomalies occurring in the same child is extremely rare. Allogeneic hematopoietic stem cell transplantation is a well-established therapy for Diamond-Blackfan anemia. However, in patients with Duchenne muscular dystrophy, stem cell therapy still remains experimental.</p> <p>Case presentation</p> <p>We report the case of a nine-year-old boy of north Indian descent with Diamond-Blackfan anemia and Duchenne muscular dystrophy who underwent successful allogeneic hematopoietic stem cell transplantation. He is transfusion-independent, and his Duchenne muscular dystrophy has shown no clinical deterioration over the past 45 months. His creatine phosphokinase levels have significantly decreased to 300 U/L from 14,000 U/L pre-transplant. The patient is 100% donor chimera in the hematopoietic system, and his muscle tissue has shown 8% to 10.4% cells of donor origin.</p> <p>Conclusion</p> <p>Our patient's Diamond-Blackfan anemia was cured by allogeneic hematopoietic stem cell transplantation. The interesting clinical observation of a possible benefit in Duchenne muscular dystrophy cannot be ruled out. However, further clinical follow-up with serial muscle biopsies and molecular studies are needed to establish this finding.</p

    Detection, Isolation and Confirmation of Crimean-Congo Hemorrhagic Fever Virus in Human, Ticks and Animals in Ahmadabad, India, 2010–2011

    Get PDF
    A nosocomial outbreak of CCHFV occurred in January 2011, in a tertiary care hospital in Ahmadabad, Gujarat State in western India. Out of a total five cases reported, contact transmission occurred to three treating medical professionals, all of whom succumbed to the disease. The only survivor was the husband of the index case. These results highlight the importance of considering CCHFV as a potential aetiology for Hemorrhagic fever (HF) cases in India. This also underlines the need for strict barrier nursing and patient isolation while managing these patients. During the investigation presence of CCHFV RNA in Hyalomma anatolicum ticks and livestock were detected in the village from where the primary case (case A) was reported. Further retrospective investigation confirmed two CCHF human cases in Rajkot village 20 kilometres to the west of Ahmadabad in 2010, and CCHFV presence in the livestock 200 kilometres to the north in the neighbouring State Rajasthan. This report shows the presence of CCHFV in human, ticks and animals in Gujarat, India. The fact of concern is the spread of this disease from one state to another due to trading of livestock

    Worksite health screening programs for predicting the development of Metabolic Syndrome in middle-aged employees: a five-year follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) management programs conventionally focus on the adults having MetS. However, risk assessment for MetS development is also important for many adults potentially at risk but do not yet fulfill MetS criteria at screening. Therefore, we conducted this follow-up study to explore whether initial screening records can be efficiently applied on the prediction of the MetS occurrence in healthy middle-aged employees.</p> <p>Methods</p> <p>Utilizing health examination data, a five-year follow-up observational study was conducted for 1384 middle-aged Taiwanese employees not fulfilling MetS criteria. Data analyzed included: gender, age, MetS components, uric acid, insulin, liver enzymes, sonographic fatty liver, hepatovirus infections and lifestyle factors. Multivariate logistic regression was used to estimate the adjusted odds ratios (OR) and 95% confidence interval (CI) of risk for MetS development. The synergistic index (SI) values and their confidence intervals of risk factor combinations were calculated; and were used to estimate the interacting effects of coupling MetS components on MetS development.</p> <p>Results</p> <p>Within five years, 13% (175 out of 1384) participants fulfilled MetS criteria. The ORs for MetS development among adults initially having one or two MetS components were 2.8 and 7.3, respectively (both p < 0.01), versus the adults having zero MetS component count at screening. Central obesity carried an OR of 7.5 (p < 0.01), which far exceeded other risk factors (all ORs < 2.7). Synergistic effects on MetS development existed between coupling MetS components: 1. High blood pressure plus low-HDL demonstrated an OR of 11.7 (p < 0.01) for MetS development and an SI of 4.7 (95% CI, 2.1-10.9). 2. High blood pressure plus hyperglycemia had an OR of 7.9 (p < 0.01), and an SI of 2.7 (95% CI, 1.2-6.4).</p> <p>Conclusion</p> <p>MetS component count and combination can be used in predicting MetS development for participants potentially at risk. Worksite MetS screening programs simultaneously allow for finding out cases and for assessing risk of MetS development.</p

    Insights into the Regulatory Characteristics of the Mycobacterial Dephosphocoenzyme A Kinase: Implications for the Universal CoA Biosynthesis Pathway

    Get PDF
    Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA)

    The Role of UPF0157 in the Folding of M. tuberculosis Dephosphocoenzyme A Kinase and the Regulation of the Latter by CTP

    Get PDF
    BACKGROUND:Targeting the biosynthetic pathway of Coenzyme A (CoA) for drug development will compromise multiple cellular functions of the tubercular pathogen simultaneously. Structural divergence in the organization of the penultimate and final enzymes of CoA biosynthesis in the host and pathogen and the differences in their regulation mark out the final enzyme, dephosphocoenzyme A kinase (CoaE) as a potential drug target. METHODOLOGY/PRINCIPAL FINDINGS:We report here a complete biochemical and biophysical characterization of the M. tuberculosis CoaE, an enzyme essential for the pathogen's survival, elucidating for the first time the interactions of a dephosphocoenzyme A kinase with its substrates, dephosphocoenzyme A and ATP; its product, CoA and an intrinsic yet novel inhibitor, CTP, which helps modulate the enzyme's kinetic capabilities providing interesting insights into the regulation of CoaE activity. We show that the mycobacterial enzyme is almost 21 times more catalytically proficient than its counterparts in other prokaryotes. ITC measurements illustrate that the enzyme follows an ordered mechanism of substrate addition with DCoA as the leading substrate and ATP following in tow. Kinetic and ITC experiments demonstrate that though CTP binds strongly to the enzyme, it is unable to participate in DCoA phosphorylation. We report that CTP actually inhibits the enzyme by decreasing its Vmax. Not surprisingly, a structural homology search for the modeled mycobacterial CoaE picks up cytidylmonophosphate kinases, deoxycytidine kinases, and cytidylate kinases as close homologs. Docking of DCoA and CTP to CoaE shows that both ligands bind at the same site, their interactions being stabilized by 26 and 28 hydrogen bonds respectively. We have also assigned a role for the universal Unknown Protein Family 0157 (UPF0157) domain in the mycobacterial CoaE in the proper folding of the full length enzyme. CONCLUSIONS/SIGNIFICANCE:In view of the evidence presented, it is imperative to assign a greater role to the last enzyme of Coenzyme A biosynthesis in metabolite flow regulation through this critical biosynthetic pathway

    A novel TOPSIS–CBR goal programming approach to sustainable healthcare treatment

    Get PDF
    Cancer is one of the most common diseases worldwide and its treatment is a complex and time-consuming process. Specifically, prostate cancer as the most common cancer among male population has received the attentions of many researchers. Oncologists and medical physicists usually rely on their past experience and expertise to prescribe the dose plan for cancer treatment. The main objective of dose planning process is to deliver high dose to the cancerous cells and simultaneously minimize the side effects of the treatment. In this article, a novel TOPSIS case based reasoning goal-programming approach has been proposed to optimize the dose plan for prostate cancer treatment. Firstly, a hybrid retrieval process TOPSIS–CBR [technique for order preference by similarity to ideal solution (TOPSIS) and case based reasoning (CBR)] is used to capture the expertise and experience of oncologists. Thereafter, the dose plans of retrieved cases are adjusted using goal-programming mathematical model. This approach will not only help oncologists to make a better trade-off between different conflicting decision making criteria but will also deliver a high dose to the cancerous cells with minimal and necessary effect on surrounding organs at risk. The efficacy of proposed method is tested on a real data set collected from Nottingham City Hospital using leave-one-out strategy. In most of the cases treatment plans generated by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Developed decision support system can assist both new and experienced oncologists in the treatment planning process

    Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection.</p> <p>Methods</p> <p>Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively.</p> <p>Results</p> <p>A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues.</p> <p>Conclusion</p> <p>Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis.</p

    Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV

    Get PDF
    We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also presented.Comment: 11 pages, 2 figures, 2 table
    corecore