794 research outputs found
Thermodynamic and Tunneling Density of States of the Integer Quantum Hall Critical State
We examine the long wave length limit of the self-consistent Hartree-Fock
approximation irreducible static density-density response function by
evaluating the charge induced by an external charge. Our results are consistent
with the compressibility sum rule and inconsistent with earlier work that did
not account for consistency between the exchange-local-field and the disorder
potential. We conclude that the thermodynamic density of states is finite, in
spite of the vanishing tunneling density of states at the critical energy of
the integer quantum Hall transition.Comment: 5 pages, 4 figures, minor revisions, published versio
Picosecond optospintronic tunnel junctions
Perpendicular magnetic tunnel junctions (p-MTJs), as building blocks of spintronic devices, offer substantial potential for next-generation nonvolatile memory applications. However, their performance is fundamentally hindered by a subnanosecond speed limitation, due to spin-polarized-current-based mechanisms. Here, we report an optospintronic tunnel junction (OTJ) device with a picosecond switching speed, ultralow power, high magnetoresistance ratio, high thermal stability, and nonvolatility. This device incorporates an all-optically switchable Gd/Co bilayer coupled to a CoFeB/MgO-based p-MTJ, by subtle tuning of Ruderman–Kittel–Kasuya–Yosida interaction. An all-optical “writing” of the OTJ within 10 ps is experimentally demonstrated by time-resolved measurements. The device shows a reliable resistance “readout” with a relatively high tunnel magnetoresistance of 34.7%, as well as promising scaling toward the nanoscale with ultralow power consumption (<100 fJ for a 50-nm-sized bit). Our proof-of-concept demonstration of OTJ might ultimately pave the way toward a new category of integrated spintronic–photonic memory devices
Short-Range Interactions and Scaling Near Integer Quantum Hall Transitions
We study the influence of short-range electron-electron interactions on
scaling behavior near the integer quantum Hall plateau transitions. Short-range
interactions are known to be irrelevant at the renormalization group fixed
point which represents the transition in the non-interacting system. We find,
nevertheless, that transport properties change discontinuously when
interactions are introduced. Most importantly, in the thermodynamic limit the
conductivity at finite temperature is zero without interactions, but non-zero
in the presence of arbitrarily weak interactions. In addition, scaling as a
function of frequency, , and temperature, , is determined by the
scaling variable (where is the exponent for the temperature
dependence of the inelastic scattering rate) and not by , as it would
be at a conventional quantum phase transition described by an interacting fixed
point. We express the inelastic exponent, , and the thermal exponent, ,
in terms of the scaling dimension, , of the interaction strength
and the dynamical exponent (which has the value ), obtaining
and .Comment: 9 pages, 4 figures, submitted to Physical Review
Vertical Confinement and Evolution of Reentrant Insulating Transition in the Fractional Quantum Hall Regime
We have observed an anomalous shift of the high field reentrant insulating
phases in a two-dimensional electron system (2DES) tightly confined within a
narrow GaAs/AlGaAs quantum well. Instead of the well-known transitions into the
high field insulating states centered around , the 2DES confined
within an 80\AA-wide quantum well exhibits the transition at .
Comparably large quantum lifetime of the 2DES in narrow well discounts the
effect of disorder and points to confinement as the primary driving force
behind the evolution of the reentrant transition.Comment: 5 pages, 4 figure
EGAM Induced by Energetic-electrons and Nonlinear Interactions among EGAM, BAEs and Tearing Modes in a Toroidal Plasma
In this letter, it is reported that the first experimental results are
associated with the GAM induced by energetic electrons (eEGAM) in HL-2A Ohmic
plasma. The energetic-electrons are generated by parallel electric fields
during magnetic reconnection associated with tearing mode (TM). The eEGAM
localizes in the core plasma, i.e. in the vicinity of q=2 surface, and is very
different from one excited by the drift-wave turbulence in the edge plasma. The
analysis indicated that the eEGAM is provided with the magnetic components,
whose intensities depend on the poloidal angles, and its mode numbers are
jm/nj=2/0. Further, there exist intense nonlinear interactions among eEGAM,
BAEs and strong tearing modes (TMs). These new findings shed light on the
underlying physics mechanism for the excitation of the low frequency (LF)
Alfv\'enic and acoustic uctuations.Comment: 5 pages,4 figure
Two-Boson Exchange Physics: A Brief Review
Current status of the two-boson exchange contributions to elastic
electron-proton scattering, both for parity conserving and parity-violating, is
briefly reviewed. How the discrepancy in the extraction of elastic nucleon form
factors between unpolarized Rosenbluth and polarization transfer experiments
can be understood, in large part, by the two-photon exchange corrections is
discussed. We also illustrate how the measurement of the ratio between
positron-proton and electron-proton scattering can be used to differentiate
different models of two-photon exchange. For the parity-violating
electron-proton scattering, the interest is on how the two-boson exchange
(TBE), \gamma Z-exchange in particular, could affect the extraction of the
long-sought strangeness form factors. Various calculations all indicate that
the magnitudes of effect of TBE on the extraction of strangeness form factors
is small, though can be large percentage-wise in certain kinematics.Comment: 6 pages, 5 figures, prepared for Proceedings of the fifth
Asia-Pacific Conference on Few-Body Problems in Physics (APFB2011), Seoul,
Korea, August 22-26, 2011, to appear in Few-Body Systems, November 201
Interface ferromagnetism and orbital reconstruction in BiFeO3- La0.7Sr0.3MnO3 heterostructures
We report the formation of a novel ferromagnetic state in the antiferromagnet
BiFeO3 at the interface with La0.7Sr0.3MnO3. Using x-ray magnetic circular
dichroism at Mn and Fe L2,3-edges, we discovered that the development of this
ferromagnetic spin structure is strongly associated with the onset of a
significant exchange bias. Our results demonstrate that the magnetic state is
directly related with an electronic orbital reconstruction at the interface,
which is supported by the linearly polarized x-ray absorption measurement at
oxygen K-edge.Comment: 17 pages, 4 figures, PRL in pres
Density-functional embedding using a plane-wave basis
The constrained electron density method of embedding a Kohn-Sham system in a
substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454
(1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993))
is applied with a plane-wave basis and both local and non-local
pseudopotentials. This method divides the electron density of the system into
substrate and embedded electron densities, the sum of which is the electron
density of the system of interest. Coupling between the substrate and embedded
systems is achieved via approximate kinetic energy functionals. Bulk aluminium
is examined as a test case for which there is a strong interaction between the
substrate and embedded systems. A number of approximations to the
kinetic-energy functional, both semi-local and non-local, are investigated. It
is found that Kohn-Sham results can be well reproduced using a non-local
kinetic energy functional, with the total energy accurate to better than 0.1 eV
per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure
- …