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Abstract 8 

In this study, we explain the causes and effects of the geometrical impossible result 9 

encountered in the widely adopted tetrakaidecahedron model (Boomsma and Poulikakos, 2001; 10 

Dai et al., 2010) for the effective thermal conductivities (ETCs) of metal foam. The geometrical 11 

impossible result is successfully eliminated by accounting for the size variation of the node with 12 

porosity. The improved model provides predictions of ETCs that are more precise than available 13 

models. For aluminum foams ( s 218k  W -1 -1m K ) using water and air as fluid media, the relative 14 

root-mean-square (RMS) deviation of the present predictions from the experimental data is about 15 

5.3%; for the reticulated vitreous carbon (RVC) foams ( s 8.5k  W -1 -1m K ), the relative RMS 16 

deviation is about 7.4%. 17 

Key words: effective thermal conductivity; foam structure; node size; deviation; improved model. 18 

Nomenclature 19 

a  foam ligament radius (m) 

d  dimensionless foam ligament radius 

e  dimensionless cubic node length 

f  function 

k  thermal conductivity (W m-1 K-1) 

L  ligament length (m) 

R  thermal resistance (m2 K W−1) 

r  cubic node length (m) 

V  volume (m3) 

Subscripts 20 

A unit cell layer 

B unit cell layer 

C unit cell layer 

D unit cell layer 

eff effective 

f fluid 
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i A, B, C, D s solid 

Greek symbol 21 

  porosity 

1. Introduction 22 

High-porosity metal foams are promising materials for thermal management applications. 23 

Since the effective thermal conductivity (ETC) is one of their most important thermal properties, 24 

an accurate evaluation of it becomes especially important. Studies on modeling the ETC of metal 25 

foams have been carried out numerically [1-3], experimentally [4-6] and analytically [5-12]. 26 

Among these approaches, the analytical approaches are less time consuming but more universal, 27 

and have attracted the attention of investigators. A review of the analytical approaches for 28 

prediction of the ETC has been conducted by Coquard and Baillis [13, 14], and Randrianalisoa 29 

and Baillis [15]. 30 

    One of the most widely used analytical approaches was developed by Boomsma and 31 

Poulikakos [10] who first used the idealized three dimensional tetrakaidecahedron model to 32 

predict the metal foam ETC. Predictions were reported to accurately match the experimental data. 33 

However, Dai et al. [11] pointed out a few problems in their work. Dai et al. [11] extended the 34 

model by accounting for the ligament orientation. Predictions of the extended model were 35 

compared with the experimental data [5], and a relative RMS deviation of about 12% was 36 

observed. The deviation indicated that there was still room for improvement. In addition, results 37 

obtained in Ref. [11] showed that, as the porosity decreased, the diameter of the ligament became 38 

longer than the length of the node, which leaded to a geometrical impossible result. The diameter 39 

of the ligament should be shorter than the length of the node (see Fig. 1), which was a basic 40 

assumption in the development of the model.  41 
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    In this paper, the tetrakaidecahedron model originally proposed by Boomsma and Poulikakos 42 

[10] and later extended by Dai et al. [11] is first discussed. The causes and effects of the 43 

geometrical impossible results are examined and explained. The model is further improved by 44 

accounting for the size variation of the nodes. We then show that the geometrical impossible 45 

results are eliminated. Lastly, predictions of our improved model are compared with several other 46 

analytical solutions as well as experimental data available in literature. It is shown that the current 47 

model has a steadily high precision in predicting the ETC of high porosity foams with a wide 48 

range of phase conductivity ratios ( s f/k k ). 49 

2. Calculation of the Effective Thermal Conductivity  50 

    It is important to note that, for a better understanding of the present discussion, reader should 51 

be familiar with the analytical approaches developed by Boomsma and Poulikakos [10], and Dai 52 

et al. [11]. Therefore, in this part of the discussion, we give a brief review of how the ETC is 53 

calculated using their approaches. For more detailed discussions, reader may refer to Refs. [10, 54 

11]. 55 

2.1. The Unit Cell of the Tetrakaidecahedron Model 56 

 Cubic nodes and cylindrical ligaments were used to represent the actual components of the 57 

foam network, as is shown in Fig. 1(a). As the lump shape at the ligament intersection varies with 58 

the foam porosity, the simplified spherical geometry is adopted for various porosities based on the 59 

fact that the lump volume has more significant effect on ETC than its shape does. The length of 60 

the node is r , the radius of the ligament is a  and its length is L  (from node center to node 61 

center). Based on the symmetry of the idealized model and one-dimension heat conduction along 62 

the z  axis, a representative unit cell which contains all geometrical characteristics of the 63 
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tetrakaidecahedron model was selected. The height of the unit cell in the z  direction is 64 

2 / 2L .While the length of the other two sides in the x y  plane are both 2L . It can be 65 

proved that the ETC of the selected unit cell is equal to that of the tetrakaidecahedron model.  66 

2.2. Effective Thermal Conductivity 67 

 In order to calculate the ETC, the unit cell is divided into four distinctive vertical layers along 68 

the z  axis, namely A, B, C and D, as is shown in Fig. 1(b). The heights of the four layers are: 69 

AL a , B / 2L r a  , C 2 / 2L L r   and D / 2L r  . 70 

 According to the extend model (accounting for the ligament orientation) proposed by Dai et al. 71 

[11], the thermal resistance of each layer is  72 

A 2 2
s f

4

[2 (1 )] {4 [2 (1 )]}

dL
R

e d e k e d e k         (1a) 73 

B 2 2
s f

( 2 )

(2 )

e d L
R

e k e k

    (1b) 74 

C 2 2
s f

2( 2 2 )

2 2(2 2)

e L
R

d k d k 
    (1c) 75 

D 2 2
s f

2

(4 )

eL
R

e k e k
    (1d) 76 

where sk  is the thermal conductivity of the solid and fk  is thermal conductivities of the fluid, 77 

d  and e  are non-dimensional parameters, defined as: /d a L  and /e r L . 78 

 The overall thermal conductivity is calculated by assuming that the thermal resistances of the 79 

layers are connected in series. Based on the Fourier law of heat conduction, the ETC can be 80 

written as 81 

A B C D
eff

A B C D

L L L L
k

R R R R

       (2) 82 

 Eq. (2) can be written as 83 

eff 1( , )k f d e  (3) 84 

here, 1f  is a known function. 85 
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 The porosity , which is defined as the ratio of the solid volume to the total volume can be 86 

calculate based on d  and e  as 87 

2 3
2 2 22

1 [ (1 ) ( ) (1 2) ]
2 2 2 4

d e e
de e d e d e

           (4) 88 

Solving for d in Eq. (4) gives 89 

1

2
33 2

2(2 2 )
4

(3 2 2)

e
d

e e




         
 (5) 90 

Substituting Eq. (5) into Eq. (3) gives 91 

eff 2( , )k f e  (6) 92 

where 2f  is another known function. Here, once the value of e  is given, the ETC can be 93 

calculated purely by porosity.   94 

3. Improved Model 95 

   We present a discussion on the model of Dai et al. [11]; highlighting the possible area of 96 

improvement. We then discuss the reason for the appearance of the geometrical impossible result. 97 

Our proposed model is then presented. 98 

3.1. Revisit Dai et al.’s Model 99 

 Precision: In order to use Eq. (6) to predict the ETC, the value of e  should first be calibrated. 100 

According to Ref. [11], a value of 0.198e   was found to minimize the relative RMS deviation 101 

of predictions from the experimental data [5]. This deviation is about 12%, which indicates that 102 

there is still room for improvement. 103 

 The Geometrical Impossible Result: It should be true that r/a > 2 to ensure that the length of 104 

the node is larger than the diameter of the ligament. However, as has been mentioned in Ref. [11], 105 

this requirement can hardly be fulfilled with e = 0.198. The reason for the appearance of this 106 
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geometrical impossible result is explained next. 107 

3.2. Causes and Effects of the geometrical impossible results 108 

 According to Eq. (4) or the structure of the tetrakaidecahedron model (see Figs. 1(a), 1(b)), a 109 

decrease in porosity  , is attributed to an increase in d when e is held constant and vice-versa. 110 

Here, d and e can be considered to represent the diameter of the ligament and the length of the 111 

node. In the model of Boomsma and Poulikakos [10] and Dai et al. [11], the parameter e  was set 112 

as a constant value. Therefore, according to Eq. (4), a decrease in porosity can only be realized by 113 

an increase in the diameter of the ligament d. As a result, as the porosity decreases, the diameter of 114 

the ligament increases while the length of the node remains constant, and eventually, the former 115 

exceeds the latter, leading to geometrical impossible results. In fact, the smaller the value of e , 116 

the more likely the geometrical impossible result occurs. As a result, geometrical impossible 117 

results were encountered more frequently in Ref. [11] than in Ref. [10].  118 

3.3. Current Model  119 

    We improve on the model of Dai et al. [10] and eliminate the geometrical impossible result 120 

by accounting for the changing foam structure with porosity through the variable e. Since the 121 

experimental data contains information of the foam structure, using the experimental data, we can 122 

find how e  varies with porosity. For a given porosity, we calibrate the e  value by comparing 123 

the predictions made by Eq. (6) against experimental data (Ref. [5]). As a result, values of e  for 124 

ten given porosities are obtained, as is shown in Fig. 2. The parameter e can be fitted by a third 125 

order polynomial function of the porosity  (Fig. 2) as 126 

2 3e a b c d                                                            (7) 127 

where a = 327.25811, b = -1075.55645, c = 1182.83207 and d = -434.55535. The fitting error is 128 
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less than 1%. 129 

4. Model Validation 130 

 After obtaining the function between e and porosity, the ETC can be predicted as a function of 131 

porosity. Substituting Eq. (7) into Eq. (6), gives: 132 

eff ( )k f                                                                  (8) 133 

where f is a known function. 134 

   When Eq. (8) is used to compute the ETCs for the experimental data in Ref. [5], the relative 135 

RMS deviation is about 5.0% for water-saturated foams, and 5.6% for air-saturated foams. The 136 

ratios of the node length to the ligament radius are also predicted using the current approach. As a 137 

result, within the porosity of 0.905 to 0.978, the r/a ratios are always > 2.0 (decreasing from 6.33 138 

to 2.71). Thus, the geometrical impossible results are eliminated. 139 

    Figure 3 shows comparisons of our model with selected models. As a result of the changing e 140 

values with porosity, our model is capable of capturing the non-linear variations in the ETCs as 141 

function of porosity. The relative RMS deviations from water and air experimental data of the 142 

present, Yang’s, Dai’s and Paek’s predictions are 5.3%, 11.7%, 13.2% and 13.3% respectively. 143 

Since the e  value is calibrated from the experimental data in Ref. [5], the high precision against 144 

the experimental data in Ref. [5] is expected. To validate our model, we use Eq. (8) to compute the 145 

ETCs for the experimental data reported by Phanikumar and Mahajan [16]. They reported the 146 

ETCs of air-saturated Al foams with porosity ranging from 0.899 to 0.959. Due to a similar foam 147 

geometry, the present model is capable of accurately predicting the variation trend of the ETCs 148 

with porosity; with a relative RMS deviation of about 12.1%. 149 

    To further assess the validity of our improved model as well as the fitted e  value (Eq. 7). 150 
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We use our model to predict the ETCs of high porosity RVC foams (which have similar structure 151 

with high porosity metal foams), and the results are compared with experimental measurements 152 

reported in Ref. [6]. As a result, for water-saturated RVC foams, all the analytical models can 153 

accurately predict the ETCs (RMS deviation < 10%). When it comes to air-saturated RVC foams, 154 

Yang’s model and Peak’s model are less accurate with a RMS deviation of more than 21.8%. The 155 

relative RMS deviations of the present model are relative small; 7.2% and 7.6% for 156 

water-saturated and air-saturated RVC foams respectively. These results indicate that our 157 

improved model have a wider range of applicability. 158 

5. Conclusions    159 

    We accounted for the size variation of the node with porosity and successfully eliminate the 160 

geometrical impossible results. The improved model provides more accurate predictions of the 161 

ETCs. Comparisons with other analytical models as well as experimental data validates that our 162 

model has a steadily high precision in predicting ETCs of foams with a wide range of solid phase 163 

to liquid phase conductivity ratios ( s f/k k ). 164 
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 210 

Fig. 1 (a) The tetrakaidecahedron model and (b) four distinctive layers for the unit cell 211 

 212 

 213 

 214 

 215 



- 11 - 
 

 216 

Fig. 2 Calibrated e values 217 
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 231 

Fig. 3 Comparisons between the analytical models and the experimental data of (a) air-aluminum 232 

and (b) water-aluminum 233 


