369 research outputs found

    Multi-neutron transfer coupling in sub-barrier 32S+90,96Zr fusion reactions

    Full text link
    The role of neutron transfers is investigated in the fusion process below the Coulomb barrier by analyzing 32S+90Zr and 32S+96Zr as benchmark reactions. A full coupled-channel calculation of the fusion excitation functions has been performed for both systems by using multi-neutron transfer coupling for the more neutron-rich reaction. The enhancement of fusion cross sections for 32S+96Zr is well reproduced at sub-barrier energies by NTFus code calculations including the coupling of the neutron-transfer channels following the Zagrebaev semiclassical model. We found similar effects for 40Ca+90Zr and 40Ca+96Zr fusion excitation functions.Comment: Minor corrections, 11 pages, 4 figures, Fusion11 Conference, Saint Malo, France, 2-6 mai 201

    Proton strangeness form factors in (4,1) clustering configurations

    Full text link
    We reexamine a recent result within a nonrelativistic constituent quark model (NRCQM) which maintains that the uuds\bar s component in the proton has its uuds subsystem in P state, with its \bar s in S state (configuration I). When the result are corrected, contrary to the previous result, we find that all the empirical signs of the form factors data can be described by the lowest-lying uuds\bar s configuration with \bar s in P state that has its uuds subsystem in SS state (configuration II). Further, it is also found that the removal of the center-of-mass (CM) motion of the clusters will enhance the contributions of the transition current considerably. We also show that a reasonable description of the existing form factors data can be obtained with a very small probability P_{s\bar s}=0.025% for the uuds\bar s component. We further see that the agreement of our prediction with the data for G_A^s at low-q^2 region can be markedly improved by a small admixture of configuration I. It is also found that by not removing CM motion, P_{s\bar s} would be overestimated by about a factor of four in the case when transition dominates over direct currents. Then, we also study the consequence of a recent estimate reached from analyzing the existing data on quark distributions that P_{s\bar s} lies between 2.4-2.9% which would lead to a large size for the five-quark (5q) system, as well as a small bump in both G^s_E+\eta G^s_M and G^s_E in the region of q^2 =< 0.1 GeV^2.Comment: Prepared for The Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 in Seoul, South Korea, 22-26 August 201

    Nonperturbative Corrections to One Gluon Exchange Quark Potentials

    Full text link
    The leading nonperturbative QCD corrections to the one gluon exchange quark-quark, quark-antiquark and qqˉq \bar{q} pair-excitation potentials are derived by using a covariant form of nonlocal two-quark and two-gluon vacuum expectation values. Our numerical calculation indicates that the correction of quark and gluon condensates to the quark-antiquark potential improves the heavy quarkonium spectra to some degree.Comment: LaTex, 16 pages, three figures, to appear in Nucl. Phys.

    A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion

    Get PDF
    AbstractConsidering the present limitation of the need for external parameters to describe the nucleus–nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca+Ca, S,Ca+Sn, and S,Ca+Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for S32,Ca40+Zr94 shows an unexpected larger enhancement than S32,Ca40+Zr96 despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics

    Evaluation of the BCS Approximation for the Attractive Hubbard Model in One Dimension

    Full text link
    The ground state energy and energy gap to the first excited state are calculated for the attractive Hubbard model in one dimension using both the Bethe Ansatz equations and the variational BCS wavefunction. Comparisons are provided as a function of coupling strength and electron density. While the ground state energies are always in very good agreement, the BCS energy gap is sometimes incorrect by an order of magnitude, particularly at half-filling. Finite size effects are also briefly discussed for cases where an exact solution in the thermodynamic limit is not possible. In general, the BCS result for the energy gap is poor compared to the exact result.Comment: 25 pages, 5 Postscript figure

    Relativistic Ring-Diagram Nuclear Matter Calculations

    Full text link
    A relativistic extension of the particle-particle hole-hole ring-diagram many-body formalism is developed by using the Dirac equation for single-particle motion in the medium. Applying this new formalism, calculations are performed for nuclear matter. The results show that the saturation density is improved and the equation of state becomes softer as compared to corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A potential, nuclear matter is predicted to saturate at an energy per nucleon of --15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm−1^{-1}, in excellent agreement with empirical information. The compression modulus is 152 MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-92-0

    A Statistical Study on Photospheric Magnetic Nonpotentiality of Active Regions and Its Relationship with Flares during Solar Cycles 22-23

    Full text link
    A statistical study is carried out on the photospheric magnetic nonpotentiality in solar active regions and its relationship with associated flares. We select 2173 photospheric vector magnetograms from 1106 active regions observed by the Solar Magnetic Field Telescope at Huairou Solar Observing Station, National Astronomical Observatories of China, in the period of 1988-2008, which covers most of the 22nd and 23rd solar cycles. We have computed the mean planar magnetic shear angle (\bar{\Delta\phi}), mean shear angle of the vector magnetic field (\bar{\Delta\psi}), mean absolute vertical current density (\bar{|J_{z}|}), mean absolute current helicity density (\bar{|h_{c}|}), absolute twist parameter (|\alpha_{av}|), mean free magnetic energy density (\bar{\rho_{free}}), effective distance of the longitudinal magnetic field (d_{E}), and modified effective distance (d_{Em}) of each photospheric vector magnetogram. Parameters \bar{|h_{c}|}, \bar{\rho_{free}}, and d_{Em} show higher correlation with the evolution of the solar cycle. The Pearson linear correlation coefficients between these three parameters and the yearly mean sunspot number are all larger than 0.59. Parameters \bar{\Delta\phi}, \bar{\Delta\psi}, \bar{|J_{z}|}, |\alpha_{av}|, and d_{E} show only weak correlations with the solar cycle, though the nonpotentiality and the complexity of active regions are greater in the activity maximum periods than in the minimum periods. All of the eight parameters show positive correlations with the flare productivity of active regions, and the combination of different nonpotentiality parameters may be effective in predicting the flaring probability of active regions.Comment: 20 pages, 5 figures, 4 tables, accepted for publication in Solar Physic

    Two-Boson Exchange Physics: A Brief Review

    Full text link
    Current status of the two-boson exchange contributions to elastic electron-proton scattering, both for parity conserving and parity-violating, is briefly reviewed. How the discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments can be understood, in large part, by the two-photon exchange corrections is discussed. We also illustrate how the measurement of the ratio between positron-proton and electron-proton scattering can be used to differentiate different models of two-photon exchange. For the parity-violating electron-proton scattering, the interest is on how the two-boson exchange (TBE), \gamma Z-exchange in particular, could affect the extraction of the long-sought strangeness form factors. Various calculations all indicate that the magnitudes of effect of TBE on the extraction of strangeness form factors is small, though can be large percentage-wise in certain kinematics.Comment: 6 pages, 5 figures, prepared for Proceedings of the fifth Asia-Pacific Conference on Few-Body Problems in Physics (APFB2011), Seoul, Korea, August 22-26, 2011, to appear in Few-Body Systems, November 201

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion

    Full text link
    We consider the extended Hubbard model with attractive on-site interaction U and nearest-neighbor repulsions V. We construct an effective Hamiltonian H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms, H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The quantum phase diagram shows two Luttinger liquid phases and a region of phase separation between them. For density n<0.422 and U<-4, singlet superconducting correlations dominate at large distances. For some parameters, the results are in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
    • 

    corecore