136 research outputs found

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Simplified mathematical model of proton exchange membrane fuel cell based on horizon fuel cell stack

    Get PDF
    This paper presents a simplified zero-dimensional mathematical model for a self-humidifying proton exchange membrane (PEM) fuel cell stack of 1 kW. The model incorporates major electric and thermodynamic variables and parameters involved in the operation of the PEM fuel cell under different operational conditions. Influence of each of these parameters and variables upon the operation and the performance of the PEM fuel cell are investigated. The mathematical equations are modeled by using Matlab–Simulink tools in order to simulate the operation of the developed model with a commercial available 1 kW horizon PEM fuel cell stack (H-1000), which is used for the purposes of model validation and tuning of the developed model. The model can be extrapolated to higher wattage fuel cells of similar arrangements. New equation is presented to determine the impact of using air to supply the PEM fuel cell instead of pure oxygen upon the concentration losses and the output voltage when useful current is drawn from it

    4E assessment of power generation systems for a mobile house in emergency condition using solar energy: a case study

    Get PDF
    In this study, a solar parabolic trough concentrator (PTC) was evaluated as a heat source of a power generation system based on energy (E1), exergy (E2), environmental (E3), and economic (E4) analyses. Various configurations of power generation systems were investigated, including the solar SRC (SRC) and solar ORC (ORC). Water and R113 were used as heat transfer fluids of SRC and ORC system, respectively. It should be mentioned that the proposed solar systems were evaluated for providing the required power of a mobile house in an emergency condition such as an earthquake that was happened in Kermanshah, Iran, in 2016 with many homeless people. The PTC system was optically and thermally investigated based on sensitivity analysis. The optimized PTC system was assumed as a heat source of the RC with two various configurations for power generation. Then, the solar RC systems were investigated based on 4E analyses for providing the power of the mobile house based on various numbers of solar RC units. It was concluded that the solar SRC system could be recommended for achieving the highest 4E performance. The highest value of its energy efficiency was found at 24.60% and of his exergy at 26.37%. On the other hand, the ORC system has energy and exergy efficiencies at 17.64% and 18.91%, respectively, which are significantly lower than the efficiencies of the SRC system. The optimum heat source temperature for the SRC system is found at 650 K, while for the ORC system at 499 K. Moreover, the best economic performance was found with the SRC system with a payback period of 7.47 years. Finally, the CO2 mitigated per annum (φCO2) was estimated at 5.29 (tones year−1), and the carbon credit (ZCO2) was calculated equal to 76.71 ($ year−1)

    Temperature

    No full text

    Thermodynamic System

    No full text

    Exergy analysis of a MSF distillation plant

    No full text
    In this paper, a large MSF distillation plant in the gulf area is analyzed thermodynamically using actual plant operation data. Exergy flow rates are evaluated throughout the plant, and the exergy flow diagram is prepared. The rates of exergy destruction and their percentages are indicated on the diagram so that the locations of highest exergy destruction can easily be identified. The highest exergy destruction (77.7%) occurs within the MSF unit, as expected, and this can be reduced by increasing the number of flashing stages. The exergy destruction in the pumps and motors account for 5.3% of the total, and this also can be reduced by using high efficiency motors and pumps. The plant is determined to have a second law efficiency of just 4.2%, which is very low. This indicates that there are major opportunities. in the plant to reduce exergy destruction and, thus, the amount of electric and thermal energy supplied, making the operation of the plant more cost effective. (c) 2005 Elsevier Ltd. All rights reserved
    • 

    corecore