292 research outputs found

    MARS therapy, the bridging to liver retransplantation-Three cases from the Hungarian liver transplant program

    Get PDF
    Besides orthotopic liver transplantation (OLT) there is no long-term and effective replacement therapy for severe liver failure. Artificial extracorporeal liver supply devices are able to reduce blood toxin levels, but do not replace any synthetic function of the liver. Molecular adsorbent recirculating system (MARS) is one of the methods that can be used to treat fulminant acute liver failure (ALF) or acute on chronic liver failure (AoCLF). The primary non-function (PNF) of the newly transplanted liver manifests in the clinical settings exactly like acute liver failure. MARS treatment can reduce the severity of complications by eliminating blood toxins, so that it can help hepatic encephalopathy (HE), hepatorenal syndrome (HRS), and the high rate mortality of cerebral herniation. This might serve as a bridging therapy before orthotopic liver retransplantation (reOLT). Three patients after a first liver transplantation became candidate for urgent MARS treatment as a bridging solution prior to reOLT in our center. Authors report these three cases, focusing on indications, MARS sessions, clinical courses, and final outcomes. © 2013 Akadémiai Kiadó, Budapest

    Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare

    Get PDF
    Laboratory experiments have been carried out to model the magnetic reconnection process in a solar flare with powerful lasers. Relativistic electrons with energy up to megaelectronvolts are detected along the magnetic separatrices bounding the reconnection outflow, which exhibit a kappa-like distribution with an effective temperature of ~109 K. The acceleration of non-thermal electrons is found to be more efficient in the case with a guide magnetic field (a component of a magnetic field along the reconnection-induced electric field) than in the case without a guide field. Hardening of the spectrum at energies ≥500 keV is observed in both cases, which remarkably resembles the hardening of hard X-ray and γ-ray spectra observed in many solar flares. This supports a recent proposal that the hardening in the hard X-ray and γ-ray emissions of solar flares is due to a hardening of the source-electron spectrum. We also performed numerical simulations that help examine behaviors of electrons in the reconnection process with the electromagnetic field configurations occurring in the experiments. The trajectories of non-thermal electrons observed in the experiments were well duplicated in the simulations. Our numerical simulations generally reproduce the electron energy spectrum as well, except for the hardening of the electron spectrum. This suggests that other mechanisms such as shock or turbulence may play an important role in the production of the observed energetic electrons

    Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities

    Get PDF
    We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development

    Study of J/Psi decays into eta Kstar Kstar-bar

    Get PDF
    We report the first observation of \mPJpsi \to \mPeta\mPKst\mAPKst decay in a \mPJpsi sample of 58 million events collected with the BESII detector. The branching fraction is determined to be (1.15±0.13±0.22)×103(1.15 \pm 0.13 \pm 0.22)\times 10^{-3}. The selected signal event sample is further used to search for the \mPY resonance through \mPJpsi \to \mPeta \mPY, \mPY\to\mPKst\mAPKst. No evidence of a signal is seen. An upper limit of \mathrm{Br}(\mPJpsi \to \mPeta \mPY)\cdot\mathrm{Br}(\mPY\to\mPKst\mAPKst) < 2.52\times 10^{-4} is set at the 90% confidence level.Comment: 11 pages, 4 figure

    Study of J\psi decaying into \omega p \bar p

    Full text link
    The decay J/ψωppˉJ/\psi \to \omega p \bar p is studied using a 5.8×1075.8 \times 10^7 J/ψJ/\psi event sample accumulated with the BES II detector at the Beijing electron-positron collider. The decay branching fraction is measured to be B(J/ψωppˉ)=(9.8±0.3±1.4)×104B(J/\psi \to \omega p \bar p)=(9.8\pm 0.3\pm 1.4)\times 10^{-4}. No significant enhancement near the ppˉp\bar p mass threshold is observed, and an upper limit of B(J/ψωX(1860))B(X(1860)ppˉ)B(J/\psi \to \omega X(1860))B(X(1860)\to p\bar p) <1.5×105< 1.5 \times 10^{-5} is determined at the 95% confidence level, where X(1860) designates the near-threshold enhancement seen in the ppˉp\bar p mass spectrum in J/ψγppˉJ/\psi \to \gamma p \bar p decays.Comment: 5 pages, 4 figure

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases
    corecore