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Abstract The use of a vertical well pattern results in pro-
ductivity deficiency and poor development effect when devel-
oping buried hill reservoirs with complex properties. In this
work, experiments are conducted to determine the best pat-
tern for complex structure wells in buried hill reservoirs.
Discretization is employed in an experimental method that
uses unit cubic rocks with a size of 5 cm × 5 cm × 5 cm.
The rocks are bonded in a spotty or reticular design to form
a macroscopic model. Based on water flooding similarity
criteria of fractured reservoir, an experimental model sim-
ilar to a quarter of a five-spot unit in an actual reservoir is
designed and manufactured. By selectively plugging wells in
the model, various well patterns are established. Simulation
results indicate that the vertical–vertical well pattern exhibits
the fastest water breakthrough, fastest increase in water cut,
and lowest recovery under the same pressure difference and
well spacing. The horizontal–horizontal well pattern has the
slowest water cut increase and the highest final oil recovery.
For fishbone wells, this pattern facilitates an ideal develop-
ment effect when the percolation direction is perpendicu-
lar to the plane determined by the mother bore and branch.
When liquid rate, water cut, and recovery are considered,
the horizontal–horizontal well pattern is recommended when
conditions allow.
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1 Introduction

The complex structure well technique that was developed
in the twentieth century can reduce water and gas coning,
improve the production of thin and fractured reservoirs, and
contribute to higher oil and gas production while producing
lower cost and greater economic benefit, especially in cases
in which vertical wells are not economical.

Complex structure wells can generally be categorized into
horizontal, fishbone, and multilateral wells. The benefit from
the increase in production provided by a horizontal well
is usually greater than the cost of drilling the horizontal
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section. Horizontal wells have been widely used by reser-
voir engineers since the end of the 1980s [1]. Fishbone well
technology extends the horizontal section plane with a sin-
gle horizontal wellbore to a plane with more than one hor-
izontal wellbore, achieving a more exposed reservoir area
and increasing well production [2]. Multilateral well tech-
nology improves well productivity by maximizing reservoir
contact, resulting in a development with fewer wells while
minimizing water and gas coning [3]. Multilateral well tech-
nology has been applied to increase the production rate per
well [4].

1.1 Theoretical Research

As complex structure well technology became widely applied
in oilfield development, an increasing number of theories and
technologies have been developed for such wells. Mathemat-
ical models for multilateral well productivity prediction have
been presented and modified [5–10], and parameters for the
optimization of complex structure wells have been studied
[11–13].

1.2 Application

Multilateral and fishbone wells have been applied in coun-
tries in the Middle East and South America, including the
UAE, Saudi Arabia, Oman, Iran, Qatar, Kuwait, Bahrain,
Iraq, and Venezuela [14,15]. For example, Saudi Aramco has
drilled over 440 horizontal and maximum reservoir contact
wells since 2002.

Building complex structure wells is an effective approach
for economic development. Such reservoirs are characterized
by low permeability, low abundance, bottom water, heavy
oil, ultra-thinness, multilayer, coalbed methane, and natural
gas reservoir [16,17]. Complex structure well technology has
also been widely used recently for the development of buried
hill reservoirs.
(a) Low-Permeability Reservoir

Hao [18] presented a new method that couples non-Darcy
elliptical and Darcy radial flows to the horizontal wellbore
in fractured reservoirs to predict and optimize the productiv-
ity of multiple transverse fractured horizontal wells in ultra-
low- permeability reservoirs. Yu [19] compared the differ-
ence between the development effects of low-permeability
reservoir in multi-fractured horizontal wells and that in fish-
bone wells. Bigno [20] studied horizontal and multilateral
well technology to develop low-permeability reservoirs.
(b) Bottom Water Reservoir

Zhou [21] studied horizontal well water flooding perfor-
mance and its influencing factors and was the first to illus-
trate the water flooding patterns of horizontal wells in bottom
water reservoir.

(c) Heavy-Oil Reservoirs
Horizontal and multilateral wells are designed to develop

heavy-oil reservoirs because of the advantages of these wells
in terms of enhanced oil recovery [3,22].
(d) Ultra-Thin Reservoir

Two fishbone wells have been drilled in the reservoir of
which the thickness is 1.5 m in Daqing oilfield that is cur-
rently the thinnest reservoir with fishbone wells, and many
technical problems arising from drilling in an ultra-thin oil
layer have been solved successfully [2,23].
(e) Multilayer Reservoir

A semi-analytical model of multilateral well was pre-
sented by Yan [24]. This model can predict the production
performance of a complex structure well in multilayer reser-
voirs with different porosities and anisotropic permeabilities,
obtain information about reservoir connectivity, and estimate
well and reservoir properties in a multilayer system.
(f) Coalbed Methane Reservoirs

Maricic [25] compared the drilling cost of dual-, tri-, and
quad-laterals with fishbone wells and studied the total length
of horizontal wells, as well as the distance between laterals
in these configurations.
(g) Gas-Drive Reservoir

Rivera [26] established multilateral well technologies,
analyzed the application of multilateral well technology in
reservoirs, and suggested that the behavior of multilateral
wells is similar to the solution gas-drive mechanism.
(h) Buried Hill Reservoir

The buried hill reservoirs are in fact remnant topogra-
phy (irregular unconformity surfaces) that has been buried
beneath younger sediments. Many of the onshore Chinese
basins contain buried hill reservoirs [27]. The application of
multilateral wells in buried hill reservoirs achieved satisfac-
tory development performance. Such application has become
a common approach to the development of similar reser-
voirs because of the significant economic benefit provided
by multilateral wells [28]. A buried hill reservoir features
developed fractures, good connection, and thick layer [29],
resulting in low productivity and poor development effect
when developed with vertical wells. Given the problems
existing in developing reservoirs with vertical wells, con-
siderable research has been conducted on the mechanisms
of complex structure wells, parameters for optimizing stereo
injection–production, productivity, and influencing factors
of the development of horizontal wells [30–35]. The well
pattern of vertical and horizontal wells was proposed, which
contributed to the improvement of buried hill reservoir devel-
opment.

This paper reports on the best well pattern and develop-
ment law for buried hill reservoirs through experiments. The
fabrication method of the experimental model and wellbore
presetting are proposed. Based on the target reservoir, a simi-
lar experimental model is established with different well pat-
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terns, through which water flooding experiments can be con-
ducted to examine the development effect. Combined with
the development effect, the best complex structure well pat-
tern is determined to provide theoretical and technical sup-
port for the further enhancement of oil recovery.

2 Fabrication Method of Experimental Model

2.1 Principle of Model Fabrication

A fractured reservoir consists of a fracture system and
a matrix system. A vertically crossed fracture network
(as shown in Fig. 1) can represent the distribution of actual
fractures.

By discretization, the experimental model is established
by adhering cubic blocks with size of 5 cm×5 cm×5 cm fab-
ricated by crude outcropping sand. The bonded face between
blocks adhered by points indicates a fracture, whereas a retic-
ulate indicates an inactive fracture. Fracture properties, such
as permeability and porosity, can be controlled quantitatively
by adjusting fracture density.

The width of fracture is affected by manufacturing pre-
cision of unit blocks and the volume of binder. To control
the fracture width, firstly, we must be sure that the man-
ufacturing precision of the unit blocks is precise enough.
The outcrop rocks are made into cubic blocks with the size
of 50 mm by infrared automatic cutting machine, and the
error of the size is less than 1 % after the selection of using
vernier caliper. Based on the strict precision control of unit
blocks manufacturing and selection, all the sizes of the unit

blocks are equal with each other, and therefore, the frac-
ture surfaces are parallel and then control the volume of
binder strictly. The depth of binder penetrates into the unit
blocks are limited and equal due to high viscosity of binder
and low permeability of matrix. The volume of binder is
controlled precisely by dispenser, so that the thicknesses of
binder between the two bonded surfaces are the same. As a
result, the widths of fractures are the same when the precision
of unit blocks manufacturing and the volume of binder are
controlled.

2.2 Design of Fracture System

A Cartesian coordinate system (x, y, z) is established with
three axes parallel to the three principal directions of
anisotropic permeability. The fracture permeability at each
direction is supposed to be Kx , Ky, Kz , whereas the frac-
ture density perpendicular to each direction is Nx , Ny, Nz ,
respectively. The formulas of fracture permeability are [36]

K̄ex = Nx k

⎡
⎢⎣

0 0 0

0 1 0

0 0 1

⎤
⎥⎦ , K̄ey = Nyk

⎡
⎢⎣

1 0 0

0 0 0

0 0 1

⎤
⎥⎦ ,

K̄ez = Nzk

⎡
⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎦ (1)

The total anisotropic permeability in this fracture system is
given by Eq. (2)

Fig. 1 Structure of dual porous
media
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K̄e = K̄ex + K̄ey + K̄ez

= k

⎡
⎢⎢⎣

Ny + Nz 0 0

0 Nx + Nz 0

0 0 Nx + Ny

⎤
⎥⎥⎦ (2)

The ratio among principal values of permeability at each
direction is

kx : ky : kz = (
Ny + Nz

) : (Nx + Nz) : (
Nx + Ny

)
(3)

This ratio can be transformed as

Nx : Ny : Nz = (ky + kz − kx ) : (kz + kx − ky)

: (kx + ky − kz) (4)

Formula (4) represents the condition of fracture distribu-
tion, considering the anisotropy of permeability.

2.3 Realization of Wellbore and Well Pattern Combination

2.3.1 Method for Wellbore Presetting

A wellbore is discretized into segments by drilling wellbores
in cubic blocks and then adhering them to form the entire
wellbore, as shown in Fig. 2. Hence, different wells, includ-
ing vertical, horizontal, and fishbone wells, can be preset
within the model.

2.3.2 Plugging of Preset Wellbore

Elastic pipelines, which are expandable and retractable with
pressure variation, are placed in the wellbore. The fluid pres-
sure in elastic pipelines is controlled by an external pres-
sure source to achieve plugging and unblocking, as shown in
Fig. 3. By selectively plugging wellbores in the model, the
target well pattern can be realized.

Fig. 2 Diagram of presetted
wellbore

Fig. 3 Plugging of presetted
wellbore
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3 Similarity Principle of Fractured Reservoir

The experimental conditions for water flooding in fractured
reservoir are assumed as follows [34]: (1) The reservoir
media are characterized by dual porosity and single per-
meability with matrix and fractures for fluid storage and
a fracture system as a percolation channel; (2) imbibition
exists between the matrix and fractures, and capillary pres-
sure within fractures is ignored; (3) the influence of oil–water
gravity difference is considered; (4) rock media and fracture
permeability are anisotropic; and (5) compressibility of fluid
and rock is neglected.

3.1 Mathematical Model

The motion equations for the fracture system are given by
{

water : �vw = −Aw · ∇Φw

oil : �vo = −Ao · ∇Φo
(5)

where �v is flow velocity and the subscripts o, w denote oil
and water, respectively. Aw and Ao are the tensors of water
and oil mobility, respectively, and are formulated as

Ao = KKro

μo
, Aw = KKrw

μw
(6)

K is the tensor of anisotropic permeability. Kro and Krw are
the relative permeabilities of oil and water, respectively. μo

andμw are the velocities of oil and water, respectively.Φo and
Φw are potentials of the oil and water phases, respectively,
and are formulated as

Φo = p + γo D, Φw = p + γw D (7)

where p is pressure, γ is specific gravity, and D is depth.
The material balance equations for the fracture system are

{
water : ∇ · �vw − qw = −Φ ∂Sw

∂t

oil : ∇ · �vo − qo = −Φ ∂So
∂t

(8)

where q and S are imbibition rate and saturation, respectively,
and Φ is the porosity.

The imbibition equation between matrix and fracture is
formulated as

qo = R · ln 2

Ta

[
Sw (x, y, z, t)

− ln 2

Ta

∫ t

0
Sw (x, y, z, τ ) e

ln 2
Ta

(τ−t)dτ

]

= R · ln 2

Ta

∫ t

0

∂Sw

∂τ
· e

ln 2
Ta

(τ−t)dτ (9)

where R is the movable oil volume per unit matrix volume; Ta

is the half-cycle of imbibition; t is time; τ is the intermediate
variable; and x, y, z are the coordinates in rectangular space
of the reservoir.

The formulas for relative permeability equations of oil
and water, without considering the capillary for fracture, are
given by

Krw = Sw, Kro = 1 − Sw (10)

The naturally satisfied equations are

So + Sw = 1, qw + qo = 0 (11)

The initial conditions are

Φo (x, y, z, t = 0) = Φi , Φw (x, y, z, t = 0) = 0,

Sw (x, y, z, t = 0) = 0 (12)

where Φi is the initial potential distribution.
Boundary conditions: reservoir boundary Γ is a closed

boundary with a normal boundary n,

∂Φo

∂n

∣∣∣∣
Γ

= 0,
∂Φw

∂n

∣∣∣∣
Γ

= 0 (13)

A wellbore is assumed to have fixed injection–production
pressure difference, formulated as

p
(

⇀
r inj, t

)
− p

(
⇀
r pro, t

)
= �p (14)

where rw is the wellbore radius;
⇀
r inj = (x, y, z)inj and

⇀
r pro = (x, y, z)pro are the vector coordinates on the injection
and production wellbore, respectively; and �p is injection
and production differential pressure.

Combining Eqs. (5)–(14), the water flooding mathemati-
cal model of fractured reservoir can be expressed by Eq. (15).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂x

[(
Kx · (1 − Sw) + μo

μw
· Kx Sw

)
· ∂Φw

∂x

]

+ ∂
∂y

[(
Ky · (1 − Sw) + μo

μw
· Ky Sw

)
· ∂Φw

∂y

]

+ ∂
∂z

[(
Kz · (1 − Sw) + μo

μw
· Kz Sw

)
· ∂Φw

∂z

]

− ∂
∂z

[
Kz · (1 − Sw) �γ

] = 0

∂
∂x

[
Kx ·Sw
μw

· ∂(Φo−Φi )
∂x

]
+ ∂

∂y

[
Ky ·Sw
μw

· ∂(Φo−Φi )
∂y

]

+ ∂
∂z

[
Kz ·Sw
μw

· ∂(Φo−Φi )
∂z

]

+ ∂
∂z

(
Kz ·Sw
μw

· �γ
)
−R ln 2

Ta

∫ t
0

∂Sw
∂τ

· e− ln 2
Ta

(t−τ )dτ =Φ · ∂Sw
∂t

Φo (x, y, z, 0) − Φi = 0, Φw (x, y, z, 0) = 0

Sw (x, y, z, 0) = 0

∂Φo
∂n

∣∣∣
Γ

= 0, ∂Φw
∂n

∣∣∣
Γ

= 0

p
(

⇀
r inj, t

)
− p

(
⇀
r pro, t

)
= �p

(15)
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Table 1 Similarity criterion for simulation of water flooding in fractured anisotropic reservoir

Similarity Expressions Definitions Effects

π1 Lx/L y Ratio of characteristic length in x direction to
characteristic length in y direction

Similarity of size

π2 Lx/Lz Ratio of characteristic length in x direction to
characteristic length in z direction

π3 x/Lx Dimensionless x coordinate Similarity of shape and space

π4 y/L y Dimensionless y coordinate

π5 z/Lz Dimensionless z coordinate

π6 K̄ y/K̄x Ratio of permeability in y direction to permeability
in x direction

Similarity of anisotropy of permeability

π7 K̄z/K̄x Ratio of permeability in z direction to permeability
in x direction

π8 Kx/K̄x Dimensionless permeability in x direction Similarity of heterogeneity of permeability

π9 Ky/K̄ y Dimensionless permeability in y direction

π10 Kz/K̄z Dimensionless permeability in z direction

π11 Φ/Φ̄ Dimensionless porosity Similarity of heterogeneity of permeability

π12 rw/Lx Ratio of well radius to characteristic length Similarity of wellbore geometry parameters

π13 μ̄o/μ̄w Ratio of oil–water viscosity Similarity of viscous resistance of fluid flow

π14 Lz · �γ̄ /�p Ratio of gravitational pressure difference to
injection–production pressure difference

Similarity of dynamics

π15 R̄/Φ̄ Ratio of movable oil in matrix to movable oil in fractures Similarity of reserves of matrix and fracture

π16 R/R̄ Dimensionless movable oil volume per unit matrix
volume

Similarity of relation between imbibition and flooding

π17 T̄ ∗/T Ratio of characteristic time of imbibition to
characteristic time of flooding

Similarity of relation between imbibition and flooding

π18 T ∗/T̄ ∗ Dimensionless half-cycle of imbibition Similarity of imbibition strength distribution

π19 t/T Dimensionless time Similarity of time and process

π20 Φw/�p Dimensionless water potential Similarity of potential distribution

π21 (Φo − Φi )/�p Dimensionless oil potential

π22 Sw Dimensionless water Similarity of saturation distribution

3.2 Similarity Criteria

Based on dimensional analysis and similarity principle [29,
35], a similarity criterion system is established. This system
consists of 22 similarity criteria, as listed in Table 1.

4 Water Flooding Experiment

4.1 Background of Factual Reservoir

A fractured buried hill reservoir in Liaohe oilfield develops
three groups of structural fractures, i.e., NE–NNE direction,
NW direction, and approximately EW direction with per-
meabilities of K1 = 360.8 × 10−3 µm2, K2 = 213.3 ×
10−3 µm2, and K3 = 80.5×10−3 µm2, respectively. Among
the fractures, mid–high-angle fractures (70◦–90◦) account
for 32 %, oblique fractures (20◦–70◦) account for 58.4 %,
and low-angle fracture (<20◦) account for 9.6 %. A 1/4 unit of

stereo five-spot well pattern in the target reservoir is selected
to identify the best well pattern. Based on water flooding
similarity criteria of the fractured reservoir, the experimen-
tal model is fabricated with vertical, horizontal, and fishbone
wells. The development effect of different well patterns can
be revealed by water flooding experiments.

4.2 Distribution of Fractures

According to the calculation method of permeability
anisotropy [37], the ratio of anisotropic permeability in the
X, Y, Z direction is given by

Kx : Ky : Kz = 1 : 1.05 : 1.4 (16)

Combining Eqs. (4) and (16), the number of fractures per-
pendicular to the X, Y, Z directions are 10, 9, and 9, respec-
tively. In practice, every bonded face perpendicular to the
X direction makes a fracture, which is the maximum frac-
ture density in the model, whereas one fracture is made for
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every two bonded faces perpendicular to the Z direction. The
first, second, third, fourth, fifth, sixth, eighth, ninth, and tenth
bonded faces perpendicular to the Y direction are chosen to
make nine fractures.

4.3 Design of Well Patterns

According to the similarity criteria, six wells are preset in
the model, with Z1 and Z2 as vertical wells, S1 and S2 as
horizontal wells, and Y1 and Y2 as fishbone wells with a
single branch 30 cm long at a 25◦ angle [intersection point
of branches with main boreholes are (4, 11, 21) and (8, 1, 11),
respectively]. The wells preset within the model are shown
in Fig. 4.

Based on the objective of this research, the method men-
tioned in Sect. 2.3 is used to design five experimental schemes
with the details shown in Table 2. Experiments are conducted
under atmospheric temperature with a constant pressure dif-
ference of 0.27 m water column. The liquid production, water
production, and the corresponding time are recorded, and the
water cut is calculated. The experiment was terminated when
the water cut reached 100 %.

Fig. 4 Outline of wells presetted within the experimental model

4.4 Processing and Selection of Rocks

After nearly eight months of trial and selection, sandstone
outcrops are selected and transported from the provinces of
Hebei, Shanxi, Yunnan, and Sichuan. More than 300 core test
experiments are conducted, and natural yellow sandstones
are selected as the model-making materials. A total of 3,500
blocks, with a size error of less than 0.1 mm and an angle
error of less than 0.5◦, are selected from 6,000 cube blocks,
which are processed from natural sandstone outcrops with a
size of 5 cm × 5 cm × 5 cm.

4.5 Establishment of Similarity Experimental Model

Two bonding methods are combined to establish the model
with a developed high-angle fracture. Based on an actual
buried hill reservoir in Liaohe oilfield, an experimental model
with cubic blocks of 11 × 11 × 21 = 2,541 is established
according to the principle in Sect. 2.1. The manufacturing
process is shown in Fig. 5. The length of a unit cubic block is
5 cm, the size of the model is 55 cm×55 cm×105 cm, and the
fracture width is proximately 0.02 cm, as shown in Fig. 6. A
PVC pipe with 6 mm outer diameter and 4 mm inner diameter
is selected for the wellbore, and one with an outer diameter
of 4 mm and an inner diameter of 2.5 mm is selected for the
pressure pipeline. A wellbore is a barefoot well completion,
and simulated oil with a viscosity of 14.48 mPa s and water
with a viscosity of 1 mPa s are selected as experimental fluids.
The macroscopic model is shown in Fig. 7.

The parameters of target reservoir and experimental model
are listed in Table 3. The compositions of injected water are
as shown in Table 4. Hydrocarbon, wax, resin, and asphal-
tene contents in crude oil are 52.03, 34.23, and 13.74 %,
respectively.

5 Analysis and Discussions

5.1 Comparison with Numerical Simulation

The numerical model is established using eclipse. Cartesian
coordinates, block center grid, black oil simulator, and lab-
oratory units are selected to establish a dual porosity single

Table 2 Experiment design
for different cases

Horizontal well S2′ is well Y2
with its branch plugged, and
horizontal well S1′ is well Y1
with its branch plugged

No. of cases Well pattern Well Remark

Case 1 Vertical well–fishbone well Z1, Z2 Z1 for injection, Z1 for production

Case 2 Fishbone well–fishbone well Y1, Y2 Y1 for injection, Y2 for production

Case 3 Horizontal well–fishbone well S1′, Y2 S1′ for injection, Y2 for production

Case 4 Fishbone well–horizontal well Y1, S2′ Y1 for injection, S2′ for production

Case 5 Horizontal well–horizontal well S1, S2 S1 for injection, S2 for production
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Fig. 5 Manufacture process for
experimental model

50mm

50mm
About 0.2mm

Fig. 6 Structure of dual porous media

permeability model. The parameters of numerical model and
experimental model, such as the size and properties, are all
the same. The gridding number is 11 × 11 × 42 = 5,042. In
vertical direction, the 1st to 21st are the matrix systems, the
22nd to 42nd are the fracture systems, and the gridding size
are 5 cm × 5 cm × 5 cm. Therefore, the experimental model
established method could be verified by the software based
on experimental data matching.

1. Permeability of fracture is much greater than that of
matrix. Under the experimental pressure, fluid flow
through the reservoir takes place only in the fracture net-
work with the matrix blocks acting as sources. This is
regarded as a dual porosity single permeability system,

Fig. 7 Experimental model

so dual porosity single permeability model is chosen in
numerical model.

2. In water-wet fractured reservoirs, the matrix rock has a
positive water–oil capillary pressure. After water is intro-
duced into the fracture, the water flows under capillary
forces into the matrix system to displace oil. Therefore,
imbibition between matrix and fracture should be consid-
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Table 3 Parameters of target reservoir and experimental model

Parameters Field Model Notes

Size 250 m × 250 m × 500 m 0.55 m × 0.55 m × 1.05 m π1−π5

Well radius (m) 0.14 0.06 π6

Fracture permeability in x direction (mD) 121.18 3,836 π7−π11

Fracture permeability in y direction (mD) 127.24 4,027

Fracture permeability in z direction (mD) 169.65 5,370

Matrix porosity (%) 2.84 16 π12

Fracture porosity (%) 0.72 1.0

Matrix irreducible water saturation (%) 47.8 54.2 π13−π22

Matrix residual oil saturation (%) 30 21.8

Movable oil ratio of matrix and fracture 1.3:1 1.3:1

Oil viscosity (mPa s) 7.72 14.48

Water viscosity (mPa s) 0.533 1

Oil–water viscosity ratio 14.48 14.48

Water density (g/cm3) 1 1

Oil density (g/cm3) 0.82 0.915

Water–oil density difference (g/cm3) 0.18 0.085

Injection–production pressure 16 MPa 0.27 m water column

Table 4 Compositions of injected water

Ion Concentration
(mg/L)

Ion Concentration
(mg/L)

K+ + Na+ 782.69 SO2−
4 9.61

Ca2+ 8.02 HCO−
3 1,452.58

Mg2+ 2.43 CO2−
3 95.22

Cl− 327.93 Salinity 2,678.48

ered, while the fracture cells usually have zero capillary
pressure.
Wettability is reflected by oil–water relative permeabil-
ity curve. In the reservoir, the minimum saturation of
wetting phase is greater than that of non-wetting phase;
the relative permeability of non-wetting phase increases
with its saturation faster than wetting phase. There-
fore, the reservoir wettability of numerical model can
be determined by the characteristics of the relative per-
meability curve. Because the reservoir is hydrophilic
reservoir, a hydrophilic relative permeability curve is
adopted in numerical model as shown in Fig. 8. Rela-
tive permeability curve of fracture system is shown in
Fig. 9.

3. Due to its great thickness of buried hill reservoirs, fluid
gravity must be considered.

4. The fracture permeability of actual reservoir is anisotropic;
therefore, the fracture permeability of the experimental
model and numerical models is anisotropic.

5. Compressibility of the fluid and rock is ignored due to tiny
pressure fluctuation range, when well pattern variation is
the only factor to be considered.

Compared the experimental results with the numerical
simulation, we find that the experiments are closer to that
of the numerical simulation, which indicates the reliability
of the experimental method.

5.2 Macroscopic Development Law

5.2.1 Liquid Rate

Figure 10 indicates that under a pressure difference of 0.27
m water column, the liquid rate of Case 2 is the highest,
followed by Case 3, with that of Case 1 being the lowest.

The reason for the difference in liquid rate lies in the
different drilling ratios of fractures for different well types.
The liquid rate of the vertical well is the lowest because of
the lowest drilling ratio of fractures in a buried hill reservoir,
in which mid–high-angle fractures developed as dominant
channels for oil–water migration. By contrast, the ratio of
drilling through fractures, as well as the drainage volume of
horizontal wells, is relatively higher under lower injection–
production pressure difference. The controlling area and
drilling ratio of fishbone wells are even larger because
of the branch, which shortens the distance between the
injection and production wells, resulting in an increasing
pressure gradient.
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Fig. 8 Relative permeability
curve of matrix and capillary
pressure

Fig. 9 Relative permeability curve of fracture

Fig. 10 Variations of liquid production by different well patterns

5.2.2 Water Cut

In Fig. 11, Case 1 features the fastest water breakthrough and
most rapid increase in water cut, followed by Cases 2, 3, and
4, with that of Case 5 being the slowest.

Fig. 11 Variations of water cut with recovery by different well patterns

For Case 1, the oil–water front breaks through along the
bottom plane of the reservoir, whereas in the other cases,
which involve the stereo injection–production of complex
structure wells, the oil–water fronts are restrained by grav-
ity, which prolongs the water–free oil production period.
The branches of the fishbone well expand the injection
area, causing injected water to migrate gently. Once water
breakthrough occurs in the fishbone well, the water cut will
increase more rapidly than that in horizontal wells.

5.2.3 Oil Recovery Percentage

The oil recovery percentage of water–free oil production
period from highest to lowest is in the order of Case 4, 3,
2, 5, and 1, with oil recoveries of 11.8, 10.9, 7.1, 2.6, and
1.1 %, respectively. The final oil recoveries are 33.93, 31.40,
34.60, 37.94, and 27.48 %. The results show that the vertical
well features the lowest oil recovery. Compared with verti-
cal wells, complex structure wells have larger areas of con-
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tact with the reservoir and a higher ratio of drilling through
fractures, which contribute to the development advantages.
Fishbone wells tend to make the oil–water front gentler when
the percolation direction is perpendicular to the plane deter-
mined by the mother bore and its branch, which induces gen-
tle water coning. Therefore, by making the plane determined
by the mother bore and its branch vertical to the percolation
direction, satisfactory development can be achieved by using
a fishbone well.

6 Conclusions

– The method for the establishment of the experimental
model and wellbore presetting are proposed according
to discretization. Different well patterns can be realized
by selectively plugging different wells in the model.

– Combined with target reservoir, the similarity experi-
mental model is designed and fabricated according to the
water flooding similarity principle of a fractured reser-
voir, which fully accords with similarity, such that the
development process of a fractured reservoir can be sim-
ulated.

– Numerical model is established which the parameters are
the same with experimental model. And reliability of the
experimental model establishing method is verified by
the software based on experimental data matching.

– The results of experiments and numerical simulation
illustrate that complex structure well patterns can con-
tribute to higher oil recovery compared with vertical well
patterns in buried hill reservoirs. Considering the exper-
imental index (liquid rate, water cut, and oil recovery),
the horizontal–horizontal well pattern is recommended.

– For fishbone wells, if the plane determined by the mother
bore and its branch is vertical to the percolation direction,
the oil–water front will be gentle, and injected water will
cone gently.
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