6 research outputs found

    Galerkin FEM for fractional order parabolic equations with initial data in H−s, 0<s≀1H^{-s},~0 < s \le 1

    Full text link
    We investigate semi-discrete numerical schemes based on the standard Galerkin and lumped mass Galerkin finite element methods for an initial-boundary value problem for homogeneous fractional diffusion problems with non-smooth initial data. We assume that Ω⊂Rd\Omega\subset \mathbb{R}^d, d=1,2,3d=1,2,3 is a convex polygonal (polyhedral) domain. We theoretically justify optimal order error estimates in L2L_2- and H1H^1-norms for initial data in H−s(Ω), 0≀s≀1H^{-s}(\Omega),~0\le s \le 1. We confirm our theoretical findings with a number of numerical tests that include initial data vv being a Dirac ÎŽ\delta-function supported on a (d−1)(d-1)-dimensional manifold.Comment: 13 pages, 3 figure

    Collider aspects of flavour physics at high Q

    Get PDF
    This review presents flavour related issues in the production and decays of heavy states at LHC, both from the experimental side and from the theoretical side. We review top quark physics and discuss flavour aspects of several extensions of the Standard Model, such as supersymmetry, little Higgs model or models with extra dimensions. This includes discovery aspects as well as measurement of several properties of these heavy states. We also present public available computational tools related to this topic.Comment: Report of Working Group 1 of the CERN Workshop ``Flavour in the era of the LHC'', Geneva, Switzerland, November 2005 -- March 200

    Collider aspects of flavor physics at high Q

    No full text
    corecore