8,561 research outputs found

    Front Stability in Mean Field Models of Diffusion Limited Growth

    Full text link
    We present calculations of the stability of planar fronts in two mean field models of diffusion limited growth. The steady state solution for the front can exist for a continuous family of velocities, we show that the selected velocity is given by marginal stability theory. We find that naive mean field theory has no instability to transverse perturbations, while a threshold mean field theory has such a Mullins-Sekerka instability. These results place on firm theoretical ground the observed lack of the dendritic morphology in naive mean field theory and its presence in threshold models. The existence of a Mullins-Sekerka instability is related to the behavior of the mean field theories in the zero-undercooling limit.Comment: 26 pp. revtex, 7 uuencoded ps figures. submitted to PR

    Transient quantum transport in double-dot Aharonov-Bohm interferometers

    Full text link
    Real-time nonequilibrium quantum dynamics of electrons in double-dot Aharonov-Bohm (AB) interferometers is studied using an exact solution of the master equation. The building of the coherence between the two electronic paths shows up via the time-dependent amplitude of the AB oscillations in the transient transport current, and can be enhanced by varying the applied bias on the leads, the on-site energy difference between the dots and the asymmetry of the coupling of the dots to the leads. The transient oscillations of the transport current do not obey phase rigidity. The circulating current has an anti-symmetric AB oscillation in the flux. The non-degeneracy of the on-site energies and the finite bias cause the occupation in each dot to have an arbitrary flux dependence as the coupling asymmetry is varied.Comment: 11 pages, 5 figure

    Effect of periodic parametric excitation on an ensemble of force-coupled self-oscillators

    Full text link
    We report the synchronization behavior in a one-dimensional chain of identical limit cycle oscillators coupled to a mass-spring load via a force relation. We consider the effect of periodic parametric modulation on the final synchronization states of the system. Two types of external parametric excitations are investigated numerically: periodic modulation of the stiffness of the inertial oscillator and periodic excitation of the frequency of the self-oscillatory element. We show that the synchronization scenarios are ruled not only by the choice of parameters of the excitation force but depend on the initial collective state in the ensemble. We give detailed analysis of entrainment behavior for initially homogeneous and inhomogeneous states. Among other results, we describe a regime of partial synchronization. This regime is characterized by the frequency of collective oscillation being entrained to the stimulation frequency but different from the average individual oscillators frequency.Comment: Comments and suggestions are welcom

    Mean Field Theory of the Morphology Transition in Stochastic Diffusion Limited Growth

    Full text link
    We propose a mean-field model for describing the averaged properties of a class of stochastic diffusion-limited growth systems. We then show that this model exhibits a morphology transition from a dense-branching structure with a convex envelope to a dendritic one with an overall concave morphology. We have also constructed an order parameter which describes the transition quantitatively. The transition is shown to be continuous, which can be verified by noting the non-existence of any hysteresis.Comment: 16 pages, 5 figure

    Probing Quantum Hall Pseudospin Ferromagnet by Resistively Detected NMR

    Full text link
    Resistively Detected Nuclear Magnetic Resonance (RD-NMR) has been used to investigate a two-subband electron system in a regime where quantum Hall pseudo-spin ferromagnetic (QHPF) states are prominently developed. It reveals that the easy-axis QHPF state around the total filling factor Μ=4\nu =4 can be detected by the RD-NMR measurement. Approaching one of the Landau level (LL) crossing points, the RD-NMR signal strength and the nuclear spin relaxation rate 1/T11/T_{1} enhance significantly, a signature of low energy spin excitations. However, the RD-NMR signal at another identical LL crossing point is surprisingly missing which presents a puzzle

    Osteocytes and mechanical loading: The Wnt connection

    Get PDF
    Bone adapts to the mechanical forces that it experiences. Orthodontic tooth movement harnesses the cell‐ and tissue‐level properties of mechanotransduction to achieve alignment and reorganization of the dentition. However, the mechanisms of action that permit bone resorption and formation in response to loads placed on the teeth are incompletely elucidated, though several mechanisms have been identified. Wnt/Lrp5 signalling in osteocytes is a key pathway that modulates bone tissue's response to load. Numerous mouse models that harbour knock‐in, knockout and transgenic/overexpression alleles targeting genes related to Wnt signalling point to the necessity of Wnt/Lrp5, and its localization to osteocytes, for proper mechanotransduction in bone. Alveolar bone is rich in osteocytes and is a highly mechanoresponsive tissue in which components of the canonical Wnt signalling cascade have been identified. As Wnt‐based agents become clinically available in the next several years, the major challenge that lies ahead will be to gain a more complete understanding of Wnt biology in alveolar bone so that improved/expedited tooth movement becomes a possibility

    Structure and energetics of the Si-SiO_2 interface

    Full text link
    Silicon has long been synonymous with semiconductor technology. This unique role is due largely to the remarkable properties of the Si-SiO_2 interface, especially the (001)-oriented interface used in most devices. Although Si is crystalline and the oxide is amorphous, the interface is essentially perfect, with an extremely low density of dangling bonds or other electrically active defects. With the continual decrease of device size, the nanoscale structure of the silicon/oxide interface becomes more and more important. Yet despite its essential role, the atomic structure of this interface is still unclear. Using a novel Monte Carlo approach, we identify low-energy structures for the interface. The optimal structure found consists of Si-O-Si "bridges" ordered in a stripe pattern, with very low energy. This structure explains several puzzling experimental observations.Comment: LaTex file with 4 figures in GIF forma

    Intrinsic noise-induced phase transitions: beyond the noise interpretation

    Get PDF
    We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Ito vs. Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Ito. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau type model. A detailed discussion of new numerical algorithms used in both interpretations is also presented.Comment: 9 pages, 8 figures, to be published in Phys. Rev.

    Flexible and Stretchable Self-Powered Multi-Sensors Based on the N-Type Thermoelectric Response of Polyurethane/Na-x(Ni-ett)(n) Composites

    Get PDF
    Flexible and stretchable electronic devices have a broad range of potential uses, from biomedicine, soft robotics, and health monitoring to the internet‐of‐things. Unfortunately, finding a robust and reliable power source remains challenging, particularly in off‐the‐grid and maintenance‐free applications. A sought‐after development overcome this challenge is the development of autonomous, self‐powered devices. A potential solution is reported exploiting a promising n‐type thermoelectric compound, poly nickel‐ethenetetrathiolates (Na_{x}(Ni‐ett)_{n}). Highly stretchable n‐type composite films are obtained by combining Nax(Ni‐ett)n with commercial polyurethane (Lycra). As high as 50 wt% Na_{x}(Ni‐ett)_{n} content composite film can withstand deformations of ≈500% and show conductivities of ≈10^{-2} S cm^{-1} and Seebeck coefficients of approx. −40 ”V K^{-1}. These novel materials can be easily synthesized on a large scale with continuous processes. When subjected to a small temperature difference (<20 °C), the films generate sufficient thermopower to be used for sensing strain (gauge factor ≈20) and visible light (sensitivity factor ≈36% (kW m^{-2})^{-1}), independent of humidity (sensitivity factor ≈0.1 (%RH)^{-1}. As a proof‐of‐concept, a wearable self‐powered sensor is demonstrated by using n‐type Na_{x}(Ni‐ett)_{n}/Lycra and PEDOT:PSS/Lycra elements, connected in series by hot pressing, without employing any metal connections, hence preserving good mechanical ductility and ease of processing

    THz Transient Photoconductivity of the III-V Dilute Nitride GaPAsN

    Get PDF
    THz Time-Resolved Photoconductivity is used to probe carrier dynamics in the dilute III-V nitride GaP0.49As0.47N0.036. In these measurements a femtosecond optical pump-pulse excites electron-hole pairs, and a delayed THz pulse measures the change in conductivity. We find the photoconductivity is dominated by localized carriers. The decay of photoconductivity after excitation is consistent with bimolecular electron-hole recombination with recombination constant r = 3.2E-8 +/-0.8E-8 cm3/s. We discuss the implications for applications in solar energy.Comment: 12 pages, 4 figure
    • 

    corecore